
ECS150  Winter 2004 
Homework Assignment 3 

Due:  Wednesday, 10 March 2004, 4:30PM , HW box,  EUII 
 
 
Question 1: Tanenbaum, Chapter 2-35 
 
Question 2: Tanenbaum, Chapter 2-36 
 
Question 3: Jurassic Park consists of a dinosaur museum and a park for 
safari riding.  There are m passengers and n single passenger cars.  
Passengers wander around the museum for a while, then line up to take a 
ride in a safari car.  When a car is available, it loads the one 
passenger it can hold and rides around the park for a random amount of 
time.  If the n cars are all out riding passengers around, then a 
passenger who wants to ride waits; if a car is ready to load but there 
are no waiting passengers, then the car waits.  Use semaphores to 
synchronize the m passenger processes and the n car processes.   
 
Here is skeleton code; it is flawed: 
 
Car-avail: semaphore := 0 
Car-taken: semaphore := 0 
Car-filled: semaphore := 0 
Passenger-released : semaphore := 0 
 
Passenger process code 
 
Co-begin(I := 1 to num-passengers) 
Do true -> 
#wander around museum until ready to take a ride 
P(car-avail); 
V(car-taken); 
P(passenger-released) 
Od 
Co-end 
 
Car process code 
 
Do true -> 
V(car-avail) 
P(car-taken) 
V(car-filled) 
 
 
Travel around the park until ride is done 
V(passenger-released 
Od 
Co-end 
 
Find the flaw.  Also show a timing diagram that indicates the sequence 
of actions for several interleavings. 
 
Question 4:   Consider the following third variation to the readers and 
 writers problem. 
 
Symmetric version: When a reader is active, new readers may start 
immediately.  When a writer finishes, a new writer has priority, if 



one is waiting.  In other words, once we have started reading, we keep 
reading until there are no readers left.  Similarly, once we have 
started writing, all pending writers are allowed to run. 
 
Show a solution using monitors.   Show a timing diagram.  Is it possible 
for a reader (or writer) to starve? 
 
 
Question 5:  Write a monitor that implements an “alarm clock” which 
  enables a calling process to delay itself for a specified number of 
  time units (ticks).  You may assume the existence of a real hardware 
  clock, which invokes a procedure “tick”, that is part of your 
  monitor, at regular intervals.  Your monitor will contain some global 
  variables and some conditions (for you to decide on) and two 
  procedures: “delay” (called by a process to set the alarm AND 
  possibly block itself), and  “tick” (called by the hardware each 
  time it generates a new tick); you can consider the hardware} to 
  be a process. 
 
   
   Part a: Assume there is only one process (in addition to the hardware), 
and delay has a single argument: 
delay(integer n).  Write the code for the process (yes, this 
is intended to be simple) 
and for the monitor (the major effort will be in writing the code 
for the procedures 
delay and tick after you 
declare the globals and conditions). 
 
 
  Part b:  Assume a fixed number of processes, “nprocs”, any of which 
    can set the alarm at any time; 
thus delay will have two arguments: delay(process p, integer n); for 
convenience the process type is really  integer. 
Note: This case can be tricky.  Remember that  
a process calling  signal must have this action 
be the last thing it does before exiting the monitor.  
And, you will want to wake up all processes whose sleeping time is up  
at the occurrence of a tick,  
but  within a procedure invocation (say  “tick”) only one process can 
be signaled at a time. 
 
  
 
Question 6:  Tanenbaum, Chapter 3, Number 21 
 
 
Question 7:  Tanenbaum, Chapter 4, Number 2 
 
Question 8:  Tanenbaum, Chapter 4, Number 4 
 
Question 9: Tanenbaum, Chapter 4, Number 7 
 
Question 10: Tanenbaum, Chapter 4, Number 8 
 
 
Question 11:  Tanenbaum, Chapter 4, Number 10 



 
 
 
Question 12:   
 
This question concerns the Buddy System, an approach to partition main memory for the purpose of 
allocating contiguous areas of main memory to processes.  In a buddy system, memory blocks are available 

of size 2 K , L <= K <= U, where  
 

•    2U = smallest block that is allocated 

•    2U = largest block that is allocated; generally, 2U is the size of the entire memory available for 
allocation.  

 
 

To begin, the entire space available for allocation is treated as a single block of size 2U . If a request of size 

s such that 2U −1 < s ≤ 2U  is made, then the entire block is allocated.  Otherwise, the block is split into two 

equal buddies of size   2U −1 .  If 2U − 2 < s ≤ 2U − 1, then the request is allocated to one of the two 
buddies.  Otherwise, one of the buddies is split in half again.  This process continues until the smallest block 
greater than or equal to s is generated and allocated to the request. At any time, the buddy system maintains 

a list of holes (unallocated blocks) of each size 2i . A hole may be removed from the (i+1) list by splitting it 
in half to create two buddies of size  in the I list.  Whenever a pair of buddies on the I list both become 
unallocated, they are removed from the list and coalesced into a single block on the (i+1) list.  Here is a 
question: 
 
A megabyte block of memory is allocated using the buddy system.  Show the results of the following 
sequence in a figure that shows the block of memory allocated at each step, the unallocated blocks, and the 
buddies:   
 
  A: request 70k 
  B: request 35k 
  C: request 80k 
      release A 
  D: request 60k 
      Release B 
      Release D 
      Release  C 
 
 
 
 
 
 
 
Question 13: . Here is a question about low level synchronization.  Instead 
of an atomic test-and-set instruction, a computer could provide an 
atomic instruction TestAndInc which sets the new value of a parameter to 
one greater than its old value, as define below: 
 
  atomic function TestAndInc(var lock: integer) : integer 



  begin 
    TestAndInc := lock; 
    Lock++; 
  End 
 
a) A student from Berkeley uses TestAndInc to implement the critical 

section problem as follows: 
 

Var L : lock := 0 #initialization of L 
Cobegin(i:= 0 to N) 
   #process 1 
 
 
   #process i 
   while TestAndInc (L) > 0 
      do null; 
   critical section for process i 
   L:= 0; 
 
   #remainder of processes 
Coend 
 

a) Does this solution provide mutual exclusion?  Explain. 
 
b) Is it possible for L to overflow:  Explain.  How might this impact 

your answer to a), depending on your assumptions on the effect of 
overflow? 

  
c) Is deadlock possible?  Explain. 
d) A student from Davis comes up with a better solution.  Here is a 

sketch of it: 
 

var L : lock := 0 #initialization of L 
Cobegin(i:= 0 to N) 
   #process i 
   while TestAndInc (L) > 0 
      do op(L); 
   critical section for process I 
   op(L); 

   Coend 
 

  What would you pick for the definition of op to provide mutual 
exclusion and to eliminate the possibility of overflow?  
 
Question 14:   Consider the following algorithm, called algorithm X, 
which might or might not be a solution to the mutual exclusion problem.  
In evaluating it (unless otherwise stated) make the same assumptions 
discussed for Petersen's algorithm: all instructions are atomic, but 
there can be a context switch between processes subsequent to any 
instruction execution. 
 
 
    var flag: array}[0..1]  of} boolean, initially false 
    var} turn := 0 (must be 0 or 1) 
 
     cobegin(i:= 0  to 1) 
    Process i 
     do true -> 



     negotiate to enter critical section 
      flag[i] := true 
      while turn not = i 
           do begin 
                   while flag[1-i]  do skip 
                   turn := i 
              end 
 
    critical section for process i 
     
 
    leave critical section 
    flag[i] := false 
 
    rest of process i 
     
 
   od 
 
 
 
    A.  This part is easy.  Assume Process 1 successfully executes the 
code following "negotiate to enter critical section" and is in its 
critical section.  Now Process 2 comes along and executes its code 
"negotiate to enter critical section."  Show that Process 2 will not get 
into its critical section.  Show that when Process 1 completes the code 
following "leave critical section" Process 2 will get into its critical 
section. 
 
   B. This part is more difficult.  Determine the correctness of  
algorithm  X as a "solution" to the critical section problem. If it is 
incorrect, show an example of instruction interleaving (what I have been 
calling a timing chart) where mutual exclusion is not achieved.  If it 
is a correct solution, argue for its correctness.  Is deadlock possible 
for this algorithm?  Explain.  


