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Goal 
What characterizes a “fair internal policy?”  Which process is given the CPU 
next? This is the province of schedulers. 



 

 

Schedulers 
  
Three kinds: 
• long-term scheduler determines which jobs are admitted to the system for 

processing 
 example: in a batch system, often more jobs are submitted than can be done 

at once, so some are spooled out to a mass storage device; the long-term 
scheduler selects the next one to be loaded into memory.  So it controls the 
degree of multiprogramming, i.e., the number of processes in memory. 

• short-term scheduler determines which job in memory (i.e., in the ready 
queue) goes next 

• medium-term scheduler: at times jobs may have to be removed  from the 
system temporarily; that is, too many jobs may be competing for memory.  
The removed process will be restarted where it left off later; called swapping.  
This scheduler decides who gets swapped out and in. 

 
The long term scheduler is invoked relatively infrequently, but the short term 

one is invoked often — whenever any process returns control to the operating 
system.  Hence the short-term scheduler must be very fast.  (Context switching 
also must be very fast; typically, 10µs to 100µs.  Many machines have special-
purpose instructions, like the VAX LDCTX, for just this reason.) 

The system should try to balance CPU-bound and I/O-bound jobs. 



 

 

Scheduling Considerations and Overview 
 
These choose which process goes next.  Which one is used depends on 

what is wanted from the system; possible measures are: 
• throughput; get the most work done in a given time 
• turnaround;  complete jobs as soon as possible after submission 
• response;  minimize the amount of time from submission to the first response 

(called the response time); this interval does not include the time to output the 
response 

• resource use;  keep each type of resource assigned to some process as 
much as possible, but avoid waiting too long for certain resources. 

• waiting time;  minimize the amount of time the process sits in the ready 
queue 

• consistency;  treat processes with given characteristics in a predictable 
manner that doesn't vary greatly over time. 

In the process of scheduling, the processes being considered must be 
distinguished upon many parameters, among them 
 priority 
 anticipated resource need (including running time) 
 running time, resources used so far 
 interactive/non-interactive 
 frequency of I/O requests 
 time spent waiting for service 
To demonstrate how algorithms work, we'll use this set of jobs: 

 Arrival Time Service Time 
A  0  10 
B  1  29 
C  2  3 
D  3  7 
E  4  12 

and measure 3 quantities: 
• turnaround time: time the process is present in the system 

T = finish time - arrival time 
• waiting time: time the process is present and not running 

W = T - service time 
• response ratio (sometimes called the “penalty ratio”): the factor by which the 

processing rate is reduced, from the user's point of view: 

R = 
T

 service time  

 



 

 

Characterization of Scheduling Algorithms 
 
decision mode 

This is non-preemptive if a process runs until it blocks or completes; at no 
time during its run will the operating system replace it with another job.  It is 
preemptive if the operating system can interrupt the currently running process to 
start another one. 
priority function 

This is a mathematical function which assigns a priority to the process; the 
process with the highest (numerical) priority goes next.  The function usually 
involves the service time so far a, the real time spent in the system so far r, and 
the total required service time t. 
arbitration rule 

If two processes have the same priority, this rule states how one of them is 
selected to run. 



 

 

The Scheduling Algorithms 
 
First Come, First Served (FCFS) 

decision mode: non-preemptive 
priority function: p(a, r, t) = r 
arbitration rule: random 

 service 
time 

arrival 
time 

start finish T W R 

A 10  0  0  10  10  0  1.0 
B 29  1  10  39  38  9  1.3 
C 3  2  39  42  40  37  13.3 
D 7  3  42  49  46  39  6.6 
E 12  4  49  61  57  45  4.8 

mean      38.2  26  5.4 
A potential problem is when a short job follows  a long one: 

 service 
time 

arrival 
time 

start finish T W R 

A' 1000  0  0  1000  1000  0  1.0 
B' 1  1  1000  1001  1000  999  1000.0 

 
 Gantt Chart: 

A B C D E

0 10 39 42 49 61

Basically, long processes love FCFS, but short ones seem to be much slower. 



 

 

Shortest Job Next (SJN), Shortest Job First (SJF), Shortest Process Next (SPN) 
As an estimate of the total service time neded is required, this algorithm is 

usually used in batch systems. 
decision mode: non-preemptive 
priority function: p(a, r, t) = –t 
arbitration rule: chronological or random 

 service 
time 

arrival 
time 

start finish T W R 

A 10  0  0  10  10  0  1.0 
B 29  1  32  61  60  31  2.1 
C 3  2  10  13  11  8  3.7 
D 7  3  13  20  17  39  2.4 
E 12  4  20  32  28  10  2.3 

mean      25.2  17.6  2.3 
Claim: Shortest Job First gives the smallest average turnaround time T out of all 
non-preemptive priority functions. 
Proof: Suppose n jobs arrive at the same time, with t1 � t2 � … � tn.  Then T(t1) = 
t1, T(t2) = t1 + t2, …, hence the average turnaround time is 

Tav = Σi iti 
Now suppose ta and tb, a < b, are swapped.  The new average turnaround time 
is: 
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Problem: need to know service times into the future so you can run the process 
with the shortest next CPU burst.  How does the short-term scheduler choose 
the next process to run?  It can use a number of different ways: 
• Most accurate is to run all ready processes, time the CPU bursts, and then 

schedule them (snicker) 
• Characterize each process as CPU-bound or I/O-bound, and specify for each 

an “average service time needed” based upon timing processes over a period 
of time and averaging.  Note that characteristics might change over a period 
of time; that is, a process might be CPU-bound for a time, then I/O-bound, 
then CPU-bound, etc. 

• Compute the expected time of the next CPU-burst as an exponential average 
of previous CPU-bursts of the process. Let tn be the length of the n-th CPU 
burst, and tn+1 the expected length of the next burst; then 

tn+1 = atn + (1-a)tn 



 

 

 where a is a parameter indicating how much to count past history (usually 
chosen around 12 ) 
a = 1 the estimate is simply the length of the last CPU burst 
a = 0 the estimate is the initial estimate holds 
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Comparing exponential estimation with actual values:    = 1/2 a  
SPN is better than FCFS for short jobs, but long jobs may have to wait for some 
time for service. 

The long-term scheduler can simply use the job's time limit as specified by 
the user; this motivates users to be realistic in their limits, as: 
• limits too low: job aborts with a “time limit exceeded”. 
• limits too high: the turnaround time may be very long. 



 

 

Shortest Remaining Time (SRT), Preemptive Shortest Process Next (PSPN) 
This is like SPN, but preemptive. 

decision mode: preemptive (at arrival) 
priority function: p(a, r, t) = a–t 
arbitration rule: chronological or random 

 service 
time 

arrival 
time 

start finish T W R 

A 10  0  0, 12  2, 20  20  10  2.0 
B 29  1  32  61  60  31  2.1 
C 3  2  2  5  3  0  1.0 
D 7  3  5  12  9  2  1.3 
E 12  4  20  32  28  16  2.3 

mean      24  11.8  1.74 
Miscellaneous: 
• Whenever a new job comes in, check the remaining service time on the 

current job. 
• For all but the longest jobs, SRT better than SJF 
• The response ratio is good (low) 
• Waiting time is also quite low for most processes. 



 

 

Highest Response Ratio Next (HRRN, HRN) 
This tries to level out bias towards long or short jobs 

decision mode: non-preemptive 
priority function: p(a, r, t) = a/c 
arbitration rule: random or FIFO 

 service 
time 

arrival 
time 

start finish T W R 

A 10  0  0  10  20  10  2.0 
B 29  1  32  61  60  31  2.1 
C 3  2  2  5  3  0  1.0 
D 7  3  5  12  9  2  1.3 
E 12  4  20  32  28  16  2.3 

mean      25.2  13  2.3 
Why?  Here are the response ratios as each process completes: 

time A B C D E 
10  29+9

29  =1.3 3+8
3  =3.7 7+7

7  =2.0 12+6
12  =1.5 

13  29+12
29  =1.4  7+10

7  =2.4 12+9
12  =1.8 

20  29+19
29  =1.7   12+16

12  =2.3 
32  29+31

29  =2.1    

The ratio used is actually 
estimated service time + waiting time so far

 estimated service time   

The idea behind this method is to get the mean response ratio low, so if a job 
has a high response ratio, it should be run at once to reduce the mean. 



 

 

Round Robin (RR) with Quantum q 

This is especially designed for time sharing; the quantum is typically 
1

60  � q � 

1 seconds. 
decision mode: preemptive (at quantum) 
priority function: p(a, r, t) = c 
arbitration rule: cyclic 

In this example the quantum is 5: 
 service 

time 
arrival 
time 

start finish T W R 

A 10  0  …  28  28  18  2.8 
B 29  1  …  61  60  31  2.1 
C 3  2  …  13  11  8  3.7 
D 7  3  …  35  32  25  4.6 
E 12  4  …  47  43  31  3.5 

mean      34.8  22.6  3.3 
Why?  Here is what things look like:  
time 0   5   10   13   18   23   28   33   35   40   45   47   52   57   61 
proc. A   B   C      D     E     A     B     D     E     B     E     B     B     B 
rem 5  24  0      2     7     0    19    0     2    14    0     9     4     0 
(here, “proc” is the process starting at the indicated time, and “rem” the 
remaining time after the quantum is complete.) 
• As each process is preempted, it moves to the rear of the queue 
• All new arrivals come in at the rear of the queue 
• As q � 0, every process thinks it is getting constant service from a processor 

that is slower in proportion to the number of competing processes; this is 
called processor sharing.  This scheme is used in hardware in CDC6600 to 
implement 10 peripheral processors with one set of hardware (i.e., processor) 
and 10 sets of registers; the processor does 1 instruction for one set of 
registers, then goes on to the next set.  (This turns out to be not much slower 
than a real processor.) 

Variants: 
• Round Robin, but adjust quantum periodically. 

 example: after every process switch, the quantum becomes q/n, where n 
is the number of processes in the ready list 
• few ready processes means that each gets a long quantum, 

minimizing process switches. 
• a lot of ready processes means that this algorithm gives more 

processes a shot at the CPU over a fixed period of time, at the price of 
more process switching 

• processes needing a small amount of CPU time get a quantum fairly 
soon, and hence may finish sooner. 

• Round Robin, but give the current process an extra quantum when a new 
process arrives  

This reduces process switching in proportion to the number of processes 
arriving. 



 

 

Selfish Round Robin (SRR) with Parameters a and b and Quantum q 
This is like round robin, except newly-arrived jobs move into the arrived 

queue (or new queue), and assigned an initial priority of 0.  Associated with the 
accepted queue is a single priority.  The priority of all processes in the new 
queue increases at rate a; that of all processes in the accepted queue increases 
at rate b.  When the priority of a process in the new queue is equal to the priority 
of the accepted queue, the process moves to the accepted queue. 

decision mode: preemptive (at quantum) 
priority function: here, W is the time that a process must wait before 

entering the accepted queue. 

 p(r , W) =  br r  Š W
 bW + a(r - W) r  > W

arbitration rule: first in, first out 
In this example the quantum is 1, and a = 3, b = 2: 

 service 
time 

arrival 
time 

start finish T W R 

A 10  0  …  …  27  17  2.7 
B 29  1  …  …  60  31  2.1 
C 3  2  …  …  15  12  5.0 
D 7  3  …  …  33  26  4.7 
E 12  4  …  …  44  32  3.7 

mean      35.8  23.6  3.6 
Why?  Assuming that new process promotions from the new queue to the 

ready queue precede quanta expirations, we have: 
time job ready queue new queue 
 running (at end of interval) (at end of interval) 
0-1 A A(2) B(0) 
1-2 A A(4) B(3), C(0) 
2-3 A B(6), A(6) C(3), D(0) 
3-4 B A(8), B(8) C(6), D(3), E(0) 
4-5 A B(10),A(10) C(9), D(6), E(3) 
5-6 B A(12), C(12), B(12) D(9), E(6) 
6-7 A C(14), B(14), A(14) D(12), E(9) 
7-8 C B(16), A(16), C(16) D(15), E(12) 
8-9 B A(18), C(18), D(18), B(18) E(15) 
9-10 A B(20), C(20), D(20), A(20) E(18) 
10-11 B C(22), D(22), A(22), B(22) E(21) 
11-12 C D(24), A(24), B(24), E(24), C(24) 

… round robin from here on … 
How a and b are chosen greatly affects the way the algorithm works: 
• a = b £ p(r,W) = ar, which is the ssame as the FCFS algorithm. 
• b = 0 £ p(r,W) = 0, which is the same as Round Robin. 
• b > a £ accept no new processes until all accepted processes complete 
This algorithm gives better service to processes executing for a while as 
opposed to new ones. 



 

 

Multilevel Feedback Queues (MLF, MLFB) with n different priority levels each of 
priority Tp 

Processes start out in the uppermost level.  After getting T0 units of CPU 
time, it drops to the next lower level, and after units of CPU time at that level, it 
drops down again …, until it reaches the lowest level.  If it blocks or otherwise 
leaves the scheduling system, and later returns, it may reenter the feedback 
queues at another queue (for example, the top one). 

decision mode: preemptive (at quantum) 
priority function: p(a) = n - i, where i satisfies both 0 � i < n and 

T0(2i—1) � a < T0(2i+1—1), assuming that  Tp = 2pT0 
arbitration rule: cyclic or chronological within queues 

In this example the quantum is 1, n = 3,  T0 = 2, and Tp = 2pT0: 
 service 

time 
arrival 
time 

start finish T W R 

A 10  0  …  …  38  28  3.8 
B 29  1  …  …  60  31  2.1 
C 3  2  …  …  11  8  3.7 
D 7  3  …  …  27  20  3.9 
E 12  4  …  …  40  28  3.3 

mean      35.2  23.3  3.4 
This algorithm favors short processes by giving them more of the CPU. 
It is also adaptive, in that it responds to the changing behavior of the system 

it controls. 
Variants 
• MLFB with round robin for all but the lowest level, and thatr first come first 

serve (but preemption possible, of course): 
 service 

time 
arrival 
time 

start finish T W R 

A 10  0  …  …  25  15  2.5 
B 29  1  …  …  49  20  2.5 
C 3  2  …  …  11  8  1.4 
D 7  3  …  …  50  43  1.2 
E 12  4  …  …  57  45  1.3 

mean      38.4  26.2  1.8 



 

 

Comparison of Scheduling Methods 
 
These policies were simulated assuming an exponential distribution of arrival 

and service rates (with parameters of a = 0.8, b = 1.0), and using 50,000 
processes (the first 100 of which were ignored, to get to a steady state).  The 
processes were categorized into percentiles based on service time required; 
each percentile         had about 500 processes. 



 

 

External Priority Methods 
  
These adjust priority based on some external factors, and are quite common 

when users pay based upon their computer use. 
Examples: 
• round robin, where the quantum is set independently for each process, based 

on the external priority of process (i.e., the more you pay, the bigger the 
quantum.) 

• Worst Service Next:  after each quantum, compute a “suffering function” 
(based on how long the process had to wait, how many times it has been 
preempted, how much the user is paying, and/or the amount of time and  
resources used).  The process with the greatest suffering gets the next 
quantum. 

• The user buys a response ratio guarantee; the suffering function used takes 
into account the difference between the guaranteed response ratio and the 
actual response ratio at the moment. 

• Deadline Scheduling: each process specifies how much service it needs and 
by what real time it must be finished.  The algorithm tries not to run jobs that 
cannot meet their deadline. 

• Fair-Share Scheduling:  allocate blocks of CPU time to a particular set of 
processes, usually by splitting user processes into groups; within each group, 
use a standard schedule, but allocate the CPU proportionately to each group 
example:  All processes are infinite loops; 1 process in group 1, 2 in group 2, 
3 in group 3, and 4 in group 4  
regular scheduler:  each process gets 10% 
fair share scheduler:  each group gets 25%; processes in sgroup share 

equally 
example:  This uses UNIX internal, not external, priorities.  Here, 3 
processes: process A in one group; processes B and C in another group.  
The internal priority function is: 

priority = 
recent CPU usage

2   + 
group CPU usage

2   + threshhold 

(with the threshold being 60 for user processes).  A decay function 
decrements the current CPU usage of processes not run; this has the effect 
of raising their priority.  The function is: 

decay of CPU usage = 
CPU usage

2   

example of the UNIX Fair Share Scheduler:  Here, the quantum is 1 second.  
Note that the higher the priority, the lower the integer representing that 
priority. 
A runs for 1 second 

 decay applied to CPU and group CPU usage; A's new priority is 60 + 
30
2   + 

30
2   = 90.  As B and C now have higher priority, one of them (say, B) goes 

next. 
B runs for 1 second 



 

 

decay applied to CPU and group CPU usage; A's new priority is 60 + 
15
2   + 

15
2   = 74, B's new priority is 60 + 

30
2   + 

30
2   = 90, and C's new priority is 60 

+ 
0
2  + 

30
2   = 75; A has the highest priority, so it runs next. 

A runs for 1 second. 

decay applied to CPU and group CPU usage; A's new priority is 60 + 
37
2   + 

37
2   = 96, B's new priority is 60 + 

15
2   + 

15
2   = 74, and C's new priority is 60 

+ 
0
2  + 

15
2   = 67; C has the highest priority, so it runs next. 

C runs for 1 second. 

decay applied to CPU and group CPU usage; A's new priority is 60 + 
18
2   + 

18
2   = 96, B's new priority is 60 + 

7
2  + 

37
2   = 81, and C's new priority is 60 + 

30
2   + 

37
2   = 93; A has the highest priority, so it runs next. 

Hence the order of running is A B A C A B A C …, with A getting 50% of the 
CPU and B and C together getting 50%. 

 
example: VAX/VMS scheduler 
 This scheduler has 32 priority levels:  levels 31 to 16 are for real-time 
processes, and levels 15 to 0 for regular processes.  Real-time processes have 
fixed priority throughout their lifetime; but the priority of regular processes is 
dynamic: 

• at process creation, a base priority assigned; this is the process' minimum 
priority 

• the current priority of the process is altered by a system events, each of 
which has an associated increment, i.e., terminal read increment > 
terminal write increment > disk I/O 

When awakened due to a system event, the appropriate increment is 
added to the current priority value; on preemption due to quantum 
expiration, the current priority drops by 1. 



 

 

event

preemption
preemption

preemption
current 
priority

time  
Processes are dispatched by their current priority. 

This scheme is like a MLFB scheme, with two differences: 
• processes need not start at the highest level; and 
• quanta are associated with each process, not level 



 

 

Evaluation 
 
How well does the algorithm meet the desired goal(s)?  4 ways to do this: 

(1) deterministic modelling - we did this when looking at the algorithms when 
we assumed a given workload. 
• It gives exact answers for the given workload; 
• Those answers are only applicable to the specific case, and many cases 

must be analyzed to discern trends; eg.,  that SJF has the minimum 
average turnaround time. 

(2) simulation - program a model of the system, using a variable representing a 
clock, and as the value of that variable increases, the simulator modifies the 
stateof the system to reflect the activities of devices, jobs, schedulers; it 
gathers statistics and prints them to indicate the algorithm's performance.  
To get the data for the simulation: 
• Use a RNG to generate it using a distribution based upon the distribution 

of jobs in the system 
• Monitor the real system, recording sequence of actual events, abnd use 

the resulting observations. 
 Using this method, you can compare algorithms exactly for the given site 

data. 
 Advantages: can be tailored for site's actual job mix 
 Problems: It can be expensive to do in time and/.or space (storing all the 

observations). 
(3) implementation - implement the scheduling algorithm and put it into the 

system.  Then watch the results. 
Problems: It can be quite expensive to modify the system and mollify the 
users; also, users can quickly learn how to work around the scheduling 
algorithm, eg., if short jobs get higher priority, they will split longer jobs up. 
Advantage: it is completely accurate. 

(4) queueing theory – represent the system mathematically. Usually, you 
assume that processes arrival times are exponentially distributed. Let a be 

the arrival rate, so the average time between arrivals is  
1
a ; this means: 

• when a process arrives, the next one will arrive within time t with 
probability 1 – e–at; in other words, 

• the probability that k processes will arrive within 1 time unit is e–aa
k

k!
 . 

Why assume an exponential distribution?  Two reasons: 
• It's easy to deal with mathematically. 
• It reflects the way processes arrive in practice. 
We can also assume the processes' service times are exponentially 
distributed with parameter b, so: 
• the probability that k processes will be serviced within 1 time unit is e–

bbk

k!
 . 



 

 

The saturation level r = 
a
b  indicates how busy the computer is on the 

average: 
r = 0 £ new processes never arive, so the machine is idle 
r = 1 £ processes arrive on the average at exactly the same rate as they can 

be finished 
r > 1 £ processes come in faster than they can be served; hence the ready 

list is expected to get longer and longer. 
example (Little's Law):  Let: 
 L be the mean queue length (excluding the job currently being serviced); 
W be the mean waiting time in the queue; 
a be the mean arrival rate for new jobs into the queue (ie, the units might 

be jobs/second) 
Hence you expect that during time W, aW new jobs arrive.  Now assume 
the system is in a “steady state;” then the number of jobs leaving the queue 
is the same as the number of jobs arriving, so                           

L = aW 
This is Little's Law, and it applies to any arrival distribution  and scheduling 
algorithm.  For example, say jobs arrive at the mean rate of 7 jobs per 
second, and there are normally 14 jobs in the queue; hence 

a = 7
jobs
sec   , L = 14 jobs £ W = 

L
a  = 

14
7   sec = 2 seconds. 

So the mean waiting time in the queue is 2 seconds per job. 
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Introduction 
This chart shows the function of each of the three types of schedulers (long-
term, short-term, and medium-term) for each of three types of operating systems 
(batch, interactive, and real-time). 
 
Chart 

job admission, 
based on charac- 
teristics and 
resource needs 

sessions and pro- 
cesses normally 
accepted unless 
capacity reached

processes either 
permanent or 
accepted at once

usually none - 
jobs remain in 
storage until 
done

processes never 
swapped

processes swapped 
when necessary

processes sched- 
uled by priority; 
continue until 
wait voluntarily, 
request service, 
are terminated

processes sched- 
uled on rotating 
basis; continue 
until service 
requested, time 
quantum expires, 
preempted

scheduling based 
on strict priority 
with immediate 
preemption; 
may time-share 
among equal 
priorities

batch interactive real-time

long-
term

medium- 
term

short- 
term

 
From 
Malcolm G. Lane and James D. Mooney, A Practical Approach to Operating 
Systems, Boyd and Fraser Publishing Company, Boston, MA ©1988, page 168. 
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Introduction 
This handout shows how the various job scheduling algorithms work. 

 
First Come, First Serve (FCFS) 

This policy services jobs in the order they arrive. 
job arrival service start finish turnaround waiting response 
name time time time time time time ratio 
A 0 10 0 10 10 0 1.0 
B 1 29 10 39 38 9 1.3 
C 2 3 39 42 40 37 13.3 
D 3 7 42 49 46 39 6.6 
E 4 12 49 61 57 45 4.8 
mean     38 26 5.4 
 
Shortest Job Next (SJN) 

This policy services the shortest job next. 
job arrival service start finish turnaround waiting response 
name time time time time time time ratio 
A 0 10 0 10 10 0 1.0 
B 1 29 32 61 60 31 2.1 
C 2 3 10 13 11 8 3.7 
D 3 7 13 20 17 10 2.4 
E 4 12 20 32 28 16 2.3 
mean     25 13 2.3 
 
Pre-emptive Shortest Job Next (PSJN) 

This policy services the shortest job next, pre-emptively. 
job arrival service start finish turnaround waiting response 
name time time time time time time ratio 
A 0 10 0 2 pre-empted by C 
  8 12 20 20 10 2.0 
B 1 29 32 61 60 31 2.1 
C 2 3 2 5 3 0 1.0 
D 3 7 5 12 9 2 1.3 
E 4 12 20 32 28 16 2.3 
mean     24 12 1.7 



 

 

Highest Response Ratio Next (HRN) 
This policy services the job with the highest response ratio next. 

job arrival service start finish turnaround waiting response 
name time time time time time time ratio 
A 0 10 0 10 10 0 1.0 
B 1 29 32 61 60 31 2.1 
C 2 3 10 13 11 8 3.7 
D 3 7 13 20 17 10 2.4 
E 4 12 20 32 28 16 2.3 
mean     25 13 2.3 
 
Round Robin (RR) 

This policy services jobs for a fixed quantum (here, 5). 
job arrival service start finish turnaround waiting response 
name time time time time time time ratio 
A 0 10 0 5  end of quantum; B starts  
  5 23 28 28 18 2.8 
B 1 29 5 10  end of quantum; C starts 
  24 28 33  end of quantum; D starts 
  19 40 45  end of quantum; E starts 
  14 47 61 60 31 2.1 
C 2 3 10 13 11 8 3.7 
D 3 7 13 18  end of quantum; E starts 
  2 33 35 32 25 4.6 
E 4 12 18 23  end of quantum; A starts 
  7 35 40  end of quantum; B starts 
  2 45 47 43 31 3.5 
mean     35 23 3.3 
 



 

 

Selfish Round Robin (SRR) 
This policy services jobs for a fixed quantum (here, 1).  The priority of new 

processes increases at a rate of 3 per quantum, of accepted processes at a rate 
of 2 per quantum.  Note that new process promotions from the new queue to the 
ready queue precede quanta expirations. 

time job ready queue new queue 
 running  (at end of interval)  (at end of interval) 
0-1 A A(2) B(0) 
1-2 A A(4) B(3), C(0) 
2-3 A B(6), A(6) C(3), D(0) 
3-4 B A(8), B(8) C(6), D(3), E(0) 
4-5 A B(10),A(10) C(9), D(6), E(3) 
5-6 B A(12), C(12), B(12) D(9), E(6) 
6-7 A C(14), B(14), A(14) D(12), E(9) 
7-8 C B(16), A(16), C(16) D(15), E(12) 
8-9 B A(18), C(18), D(18), B(18) E(15) 
9-10 A C(20), D(20), B(20), A(20) E(18) 
10-11 C D(22), B(22), A(22), C(22) E(21) 
11-12 D B(24), A(24), C(24), E(24),  
  D(24) 

… round robin from here on …  
The relevant numbers (ignoring start and finish time) are: 
job arrival service start finish turnaround waiting response 
name time time time time time time ratio 
A 0 10 … … 27 17 2.7 
B 1 29 … … 60 31 2.1 
C 2 3 … … 15 12 5.0 
D 3 7 … … 33 26 4.7 
E 4 12 … … 44 32 3.7 
mean     35.8 23.6 3.6 
 



 

 

Multilevel Feedback (MLFB) 
The variant of this class of scheduling algorithms uses three levels: 

• processes at level 1 are scheduled round robin; the relevant quantum is 2, 
and when a quantum expires the job is moved to level 2. 

• processes at level 2 are scheduled round robin; the quantum is 4, and 
processes are allowed 2 quanta before being moved to level 3. 

•  processes at level 3 are serviced first come first serve. 
The jobs A, B, C, D, and E have been augmented by F, a 1-second job 

arriving at time 13, and G, an 11-second job arriving at time 50.  These are to 
demonstrate that quanta are usually not interrupted. 

In what follows, the number in parentheses in the comment field is the 
remaining service time for the job. 



 

 

 time level 1 level 2 level 3 comments 
 0 A — — A(10) arrives, runs 
 1 AB — — B(29) arrives, A continues quantum 
 2 BC A — C(3) arrives, A's quantum expires (8), moves 

to level 2, B runs 
 3 BCD A — D(7) arrives, B continues quantum 
 4 CDE AB — E(12) arrives, B's quantum expires (27), 

moves down, C runs 
 6 DE ABC — C's quantum expires (1), moves down, D 

runs 
 8 E ABCD — D's quantum expires (5), moves down, E runs 
 10 — ABCDE — E's quantum expires (10), moves down, A 

runs from level 2 (level 1 is empty) 
 13 F ABCDE — F(1) arrives, A's quantum continues 
 14 F ABCDE — A's quantum expires (4), F runs (at level 1) 
 15 — ABCDE — F finishes, B runs from level 2 (level 1 is 

empty) 
 19 — ABCDE — B's quantum expires (23), C runs 
 20 — ABDE — C finishes, D runs 
 24 — ABDE — D's quantum expires (1), E runs 
 28 — ABDE — E's quantum expires (6), A runs 
 32 — BDE — A finishes, B runs 
 36 — DE B B's quantum expires (19), moves down, D 

runs 
 37 — E B D finishes, E runs 
 41 — — BE E's quantum expires (2), moves down, B runs 

from level 3 (since there is nothing in higher 
levels) 

 50 G — BE G arrives(11), B continues to run 
 60 G — E B finishes, G runs (since it is in the highest 

level) 
 62 — G E G's quantum expires (9), moves down, G 

runs from level 2 
 66 — G E G's quantum expires (5), G runs 
 70 — — EG G's quantum expires (1), moves down, E 

runs 
 72 — — G E finishes, G runs 
 73 — — — G finishes 



 

 

The relevant numbers (ignoring start and finish time) are: 
job arrival service start finish turnaround waiting response 
name time time time time time time ratio 
A 0 10 0 2  preempted by B 
  8 10 14  preempted by F 
  4 28 32 32 22 3.2 
B 1 29 2 4  preempted by C 
  27 15 19  preempted by C 
  23 32 36  preempted by D 
  19 41 60 59 30 2.0 
C 2 3 4 6  preempted by D 
  1 19 20 18 15 6.0 
D 3 7 6 8  preempted by E 
  5 20 24  preempted by E 
  1 36 37 34 27 4.9 
E 4 12 8 10  preempted by A 
  10 24 28  preempted by A 
  6 37 41  preempted by B 
  2 70 72 68 56 5.7 
F 13 1 14 15 2 1 2.0 
G 50 11 60 70  preempted by E 
  1 72 73 23 12 2.1 
mean     33.7 23.3 3.7 


