

PPrroocceessss SScchheedduulliinngg

NNootteess pprreeppaarreedd bbyy MMaatttt BBiisshhoopp

Goal
What characterizes a “fair internal policy?” Which process is given the CPU
next? This is the province of schedulers.

Schedulers

Three kinds:
• long-term scheduler determines which jobs are admitted to the system for

processing
 example: in a batch system, often more jobs are submitted than can be done

at once, so some are spooled out to a mass storage device; the long-term
scheduler selects the next one to be loaded into memory. So it controls the
degree of multiprogramming, i.e., the number of processes in memory.

• short-term scheduler determines which job in memory (i.e., in the ready
queue) goes next

• medium-term scheduler: at times jobs may have to be removed from the
system temporarily; that is, too many jobs may be competing for memory.
The removed process will be restarted where it left off later; called swapping.
This scheduler decides who gets swapped out and in.

The long term scheduler is invoked relatively infrequently, but the short term

one is invoked often — whenever any process returns control to the operating
system. Hence the short-term scheduler must be very fast. (Context switching
also must be very fast; typically, 10µs to 100µs. Many machines have special-
purpose instructions, like the VAX LDCTX, for just this reason.)

The system should try to balance CPU-bound and I/O-bound jobs.

Scheduling Considerations and Overview

These choose which process goes next. Which one is used depends on

what is wanted from the system; possible measures are:
• throughput; get the most work done in a given time
• turnaround; complete jobs as soon as possible after submission
• response; minimize the amount of time from submission to the first response

(called the response time); this interval does not include the time to output the
response

• resource use; keep each type of resource assigned to some process as
much as possible, but avoid waiting too long for certain resources.

• waiting time; minimize the amount of time the process sits in the ready
queue

• consistency; treat processes with given characteristics in a predictable
manner that doesn't vary greatly over time.

In the process of scheduling, the processes being considered must be
distinguished upon many parameters, among them
 priority
 anticipated resource need (including running time)
 running time, resources used so far
 interactive/non-interactive
 frequency of I/O requests
 time spent waiting for service
To demonstrate how algorithms work, we'll use this set of jobs:

 Arrival Time Service Time
A 0 10
B 1 29
C 2 3
D 3 7
E 4 12

and measure 3 quantities:
• turnaround time: time the process is present in the system

T = finish time - arrival time
• waiting time: time the process is present and not running

W = T - service time
• response ratio (sometimes called the “penalty ratio”): the factor by which the

processing rate is reduced, from the user's point of view:

R =
T

 service time

Characterization of Scheduling Algorithms

decision mode

This is non-preemptive if a process runs until it blocks or completes; at no
time during its run will the operating system replace it with another job. It is
preemptive if the operating system can interrupt the currently running process to
start another one.
priority function

This is a mathematical function which assigns a priority to the process; the
process with the highest (numerical) priority goes next. The function usually
involves the service time so far a, the real time spent in the system so far r, and
the total required service time t.
arbitration rule

If two processes have the same priority, this rule states how one of them is
selected to run.

The Scheduling Algorithms

First Come, First Served (FCFS)

decision mode: non-preemptive
priority function: p(a, r, t) = r
arbitration rule: random

 service
time

arrival
time

start finish T W R

A 10 0 0 10 10 0 1.0
B 29 1 10 39 38 9 1.3
C 3 2 39 42 40 37 13.3
D 7 3 42 49 46 39 6.6
E 12 4 49 61 57 45 4.8

mean 38.2 26 5.4
A potential problem is when a short job follows a long one:

 service
time

arrival
time

start finish T W R

A' 1000 0 0 1000 1000 0 1.0
B' 1 1 1000 1001 1000 999 1000.0

 Gantt Chart:

A B C D E

0 10 39 42 49 61

Basically, long processes love FCFS, but short ones seem to be much slower.

Shortest Job Next (SJN), Shortest Job First (SJF), Shortest Process Next (SPN)
As an estimate of the total service time neded is required, this algorithm is

usually used in batch systems.
decision mode: non-preemptive
priority function: p(a, r, t) = –t
arbitration rule: chronological or random

 service
time

arrival
time

start finish T W R

A 10 0 0 10 10 0 1.0
B 29 1 32 61 60 31 2.1
C 3 2 10 13 11 8 3.7
D 7 3 13 20 17 39 2.4
E 12 4 20 32 28 10 2.3

mean 25.2 17.6 2.3
Claim: Shortest Job First gives the smallest average turnaround time T out of all
non-preemptive priority functions.
Proof: Suppose n jobs arrive at the same time, with t1 � t2 � … � tn. Then T(t1) =
t1, T(t2) = t1 + t2, …, hence the average turnaround time is

Tav = Σi iti
Now suppose ta and tb, a < b, are swapped. The new average turnaround time
is:

 T'
av

 =
n
1 (nt

1
 + (n- 1)t

2
 + … + (n- a+1)t

b
 + … + (n- b+1)t

a
 + … + t

n
)

so

 T'
av

 - T
av

 =
n
1 ((n- a+1)t

b
 - (n- b+1)t

a
 + (n- a+1)t

a
 - (n- b+1)t

b
)

and

 T'
av

 - T
av

 =
n
1 (b- a)(t

b
- t

a
) � 0 because b � a i mpl i es t

b
 � t

a
.

Problem: need to know service times into the future so you can run the process
with the shortest next CPU burst. How does the short-term scheduler choose
the next process to run? It can use a number of different ways:
• Most accurate is to run all ready processes, time the CPU bursts, and then

schedule them (snicker)
• Characterize each process as CPU-bound or I/O-bound, and specify for each

an “average service time needed” based upon timing processes over a period
of time and averaging. Note that characteristics might change over a period
of time; that is, a process might be CPU-bound for a time, then I/O-bound,
then CPU-bound, etc.

• Compute the expected time of the next CPU-burst as an exponential average
of previous CPU-bursts of the process. Let tn be the length of the n-th CPU
burst, and tn+1 the expected length of the next burst; then

tn+1 = atn + (1-a)tn

 where a is a parameter indicating how much to count past history (usually
chosen around 12)
a = 1 the estimate is simply the length of the last CPU burst
a = 0 the estimate is the initial estimate holds

12

10

8

6

4

2

0
0 1 2 3 4 5 6 7 8

burst
length

actual

estimated

t 6 4 6 4 13 13 13 13
i

t
i

8 6 6 5 9 11 12 1310

Comparing exponential estimation with actual values: = 1/2 a
SPN is better than FCFS for short jobs, but long jobs may have to wait for some
time for service.

The long-term scheduler can simply use the job's time limit as specified by
the user; this motivates users to be realistic in their limits, as:
• limits too low: job aborts with a “time limit exceeded”.
• limits too high: the turnaround time may be very long.

Shortest Remaining Time (SRT), Preemptive Shortest Process Next (PSPN)
This is like SPN, but preemptive.

decision mode: preemptive (at arrival)
priority function: p(a, r, t) = a–t
arbitration rule: chronological or random

 service
time

arrival
time

start finish T W R

A 10 0 0, 12 2, 20 20 10 2.0
B 29 1 32 61 60 31 2.1
C 3 2 2 5 3 0 1.0
D 7 3 5 12 9 2 1.3
E 12 4 20 32 28 16 2.3

mean 24 11.8 1.74
Miscellaneous:
• Whenever a new job comes in, check the remaining service time on the

current job.
• For all but the longest jobs, SRT better than SJF
• The response ratio is good (low)
• Waiting time is also quite low for most processes.

Highest Response Ratio Next (HRRN, HRN)
This tries to level out bias towards long or short jobs

decision mode: non-preemptive
priority function: p(a, r, t) = a/c
arbitration rule: random or FIFO

 service
time

arrival
time

start finish T W R

A 10 0 0 10 20 10 2.0
B 29 1 32 61 60 31 2.1
C 3 2 2 5 3 0 1.0
D 7 3 5 12 9 2 1.3
E 12 4 20 32 28 16 2.3

mean 25.2 13 2.3
Why? Here are the response ratios as each process completes:

time A B C D E
10 29+9

29 =1.3 3+8
3 =3.7 7+7

7 =2.0 12+6
12 =1.5

13 29+12
29 =1.4 7+10

7 =2.4 12+9
12 =1.8

20 29+19
29 =1.7 12+16

12 =2.3
32 29+31

29 =2.1

The ratio used is actually
estimated service time + waiting time so far

 estimated service time

The idea behind this method is to get the mean response ratio low, so if a job
has a high response ratio, it should be run at once to reduce the mean.

Round Robin (RR) with Quantum q

This is especially designed for time sharing; the quantum is typically
1

60 � q �

1 seconds.
decision mode: preemptive (at quantum)
priority function: p(a, r, t) = c
arbitration rule: cyclic

In this example the quantum is 5:
 service

time
arrival
time

start finish T W R

A 10 0 … 28 28 18 2.8
B 29 1 … 61 60 31 2.1
C 3 2 … 13 11 8 3.7
D 7 3 … 35 32 25 4.6
E 12 4 … 47 43 31 3.5

mean 34.8 22.6 3.3
Why? Here is what things look like:
time 0 5 10 13 18 23 28 33 35 40 45 47 52 57 61
proc. A B C D E A B D E B E B B B
rem 5 24 0 2 7 0 19 0 2 14 0 9 4 0
(here, “proc” is the process starting at the indicated time, and “rem” the
remaining time after the quantum is complete.)
• As each process is preempted, it moves to the rear of the queue
• All new arrivals come in at the rear of the queue
• As q � 0, every process thinks it is getting constant service from a processor

that is slower in proportion to the number of competing processes; this is
called processor sharing. This scheme is used in hardware in CDC6600 to
implement 10 peripheral processors with one set of hardware (i.e., processor)
and 10 sets of registers; the processor does 1 instruction for one set of
registers, then goes on to the next set. (This turns out to be not much slower
than a real processor.)

Variants:
• Round Robin, but adjust quantum periodically.

 example: after every process switch, the quantum becomes q/n, where n
is the number of processes in the ready list
• few ready processes means that each gets a long quantum,

minimizing process switches.
• a lot of ready processes means that this algorithm gives more

processes a shot at the CPU over a fixed period of time, at the price of
more process switching

• processes needing a small amount of CPU time get a quantum fairly
soon, and hence may finish sooner.

• Round Robin, but give the current process an extra quantum when a new
process arrives

This reduces process switching in proportion to the number of processes
arriving.

Selfish Round Robin (SRR) with Parameters a and b and Quantum q
This is like round robin, except newly-arrived jobs move into the arrived

queue (or new queue), and assigned an initial priority of 0. Associated with the
accepted queue is a single priority. The priority of all processes in the new
queue increases at rate a; that of all processes in the accepted queue increases
at rate b. When the priority of a process in the new queue is equal to the priority
of the accepted queue, the process moves to the accepted queue.

decision mode: preemptive (at quantum)
priority function: here, W is the time that a process must wait before

entering the accepted queue.

 p(r , W) = br r Š W
 bW + a(r - W) r > W

arbitration rule: first in, first out
In this example the quantum is 1, and a = 3, b = 2:

 service
time

arrival
time

start finish T W R

A 10 0 … … 27 17 2.7
B 29 1 … … 60 31 2.1
C 3 2 … … 15 12 5.0
D 7 3 … … 33 26 4.7
E 12 4 … … 44 32 3.7

mean 35.8 23.6 3.6
Why? Assuming that new process promotions from the new queue to the

ready queue precede quanta expirations, we have:
time job ready queue new queue
 running (at end of interval) (at end of interval)
0-1 A A(2) B(0)
1-2 A A(4) B(3), C(0)
2-3 A B(6), A(6) C(3), D(0)
3-4 B A(8), B(8) C(6), D(3), E(0)
4-5 A B(10),A(10) C(9), D(6), E(3)
5-6 B A(12), C(12), B(12) D(9), E(6)
6-7 A C(14), B(14), A(14) D(12), E(9)
7-8 C B(16), A(16), C(16) D(15), E(12)
8-9 B A(18), C(18), D(18), B(18) E(15)
9-10 A B(20), C(20), D(20), A(20) E(18)
10-11 B C(22), D(22), A(22), B(22) E(21)
11-12 C D(24), A(24), B(24), E(24), C(24)

… round robin from here on …
How a and b are chosen greatly affects the way the algorithm works:
• a = b £ p(r,W) = ar, which is the ssame as the FCFS algorithm.
• b = 0 £ p(r,W) = 0, which is the same as Round Robin.
• b > a £ accept no new processes until all accepted processes complete
This algorithm gives better service to processes executing for a while as
opposed to new ones.

Multilevel Feedback Queues (MLF, MLFB) with n different priority levels each of
priority Tp

Processes start out in the uppermost level. After getting T0 units of CPU
time, it drops to the next lower level, and after units of CPU time at that level, it
drops down again …, until it reaches the lowest level. If it blocks or otherwise
leaves the scheduling system, and later returns, it may reenter the feedback
queues at another queue (for example, the top one).

decision mode: preemptive (at quantum)
priority function: p(a) = n - i, where i satisfies both 0 � i < n and

T0(2i—1) � a < T0(2i+1—1), assuming that Tp = 2pT0
arbitration rule: cyclic or chronological within queues

In this example the quantum is 1, n = 3, T0 = 2, and Tp = 2pT0:
 service

time
arrival
time

start finish T W R

A 10 0 … … 38 28 3.8
B 29 1 … … 60 31 2.1
C 3 2 … … 11 8 3.7
D 7 3 … … 27 20 3.9
E 12 4 … … 40 28 3.3

mean 35.2 23.3 3.4
This algorithm favors short processes by giving them more of the CPU.
It is also adaptive, in that it responds to the changing behavior of the system

it controls.
Variants
• MLFB with round robin for all but the lowest level, and thatr first come first

serve (but preemption possible, of course):
 service

time
arrival
time

start finish T W R

A 10 0 … … 25 15 2.5
B 29 1 … … 49 20 2.5
C 3 2 … … 11 8 1.4
D 7 3 … … 50 43 1.2
E 12 4 … … 57 45 1.3

mean 38.4 26.2 1.8

Comparison of Scheduling Methods

These policies were simulated assuming an exponential distribution of arrival

and service rates (with parameters of a = 0.8, b = 1.0), and using 50,000
processes (the first 100 of which were ignored, to get to a steady state). The
processes were categorized into percentiles based on service time required;
each percentile had about 500 processes.

External Priority Methods

These adjust priority based on some external factors, and are quite common

when users pay based upon their computer use.
Examples:
• round robin, where the quantum is set independently for each process, based

on the external priority of process (i.e., the more you pay, the bigger the
quantum.)

• Worst Service Next: after each quantum, compute a “suffering function”
(based on how long the process had to wait, how many times it has been
preempted, how much the user is paying, and/or the amount of time and
resources used). The process with the greatest suffering gets the next
quantum.

• The user buys a response ratio guarantee; the suffering function used takes
into account the difference between the guaranteed response ratio and the
actual response ratio at the moment.

• Deadline Scheduling: each process specifies how much service it needs and
by what real time it must be finished. The algorithm tries not to run jobs that
cannot meet their deadline.

• Fair-Share Scheduling: allocate blocks of CPU time to a particular set of
processes, usually by splitting user processes into groups; within each group,
use a standard schedule, but allocate the CPU proportionately to each group
example: All processes are infinite loops; 1 process in group 1, 2 in group 2,
3 in group 3, and 4 in group 4
regular scheduler: each process gets 10%
fair share scheduler: each group gets 25%; processes in sgroup share

equally
example: This uses UNIX internal, not external, priorities. Here, 3
processes: process A in one group; processes B and C in another group.
The internal priority function is:

priority =
recent CPU usage

2 +
group CPU usage

2 + threshhold

(with the threshold being 60 for user processes). A decay function
decrements the current CPU usage of processes not run; this has the effect
of raising their priority. The function is:

decay of CPU usage =
CPU usage

2

example of the UNIX Fair Share Scheduler: Here, the quantum is 1 second.
Note that the higher the priority, the lower the integer representing that
priority.
A runs for 1 second

 decay applied to CPU and group CPU usage; A's new priority is 60 +
30
2 +

30
2 = 90. As B and C now have higher priority, one of them (say, B) goes

next.
B runs for 1 second

decay applied to CPU and group CPU usage; A's new priority is 60 +
15
2 +

15
2 = 74, B's new priority is 60 +

30
2 +

30
2 = 90, and C's new priority is 60

+
0
2 +

30
2 = 75; A has the highest priority, so it runs next.

A runs for 1 second.

decay applied to CPU and group CPU usage; A's new priority is 60 +
37
2 +

37
2 = 96, B's new priority is 60 +

15
2 +

15
2 = 74, and C's new priority is 60

+
0
2 +

15
2 = 67; C has the highest priority, so it runs next.

C runs for 1 second.

decay applied to CPU and group CPU usage; A's new priority is 60 +
18
2 +

18
2 = 96, B's new priority is 60 +

7
2 +

37
2 = 81, and C's new priority is 60 +

30
2 +

37
2 = 93; A has the highest priority, so it runs next.

Hence the order of running is A B A C A B A C …, with A getting 50% of the
CPU and B and C together getting 50%.

example: VAX/VMS scheduler
 This scheduler has 32 priority levels: levels 31 to 16 are for real-time
processes, and levels 15 to 0 for regular processes. Real-time processes have
fixed priority throughout their lifetime; but the priority of regular processes is
dynamic:

• at process creation, a base priority assigned; this is the process' minimum
priority

• the current priority of the process is altered by a system events, each of
which has an associated increment, i.e., terminal read increment >
terminal write increment > disk I/O

When awakened due to a system event, the appropriate increment is
added to the current priority value; on preemption due to quantum
expiration, the current priority drops by 1.

event

preemption
preemption

preemption
current
priority

time
Processes are dispatched by their current priority.

This scheme is like a MLFB scheme, with two differences:
• processes need not start at the highest level; and
• quanta are associated with each process, not level

Evaluation

How well does the algorithm meet the desired goal(s)? 4 ways to do this:

(1) deterministic modelling - we did this when looking at the algorithms when
we assumed a given workload.
• It gives exact answers for the given workload;
• Those answers are only applicable to the specific case, and many cases

must be analyzed to discern trends; eg., that SJF has the minimum
average turnaround time.

(2) simulation - program a model of the system, using a variable representing a
clock, and as the value of that variable increases, the simulator modifies the
stateof the system to reflect the activities of devices, jobs, schedulers; it
gathers statistics and prints them to indicate the algorithm's performance.
To get the data for the simulation:
• Use a RNG to generate it using a distribution based upon the distribution

of jobs in the system
• Monitor the real system, recording sequence of actual events, abnd use

the resulting observations.
 Using this method, you can compare algorithms exactly for the given site

data.
 Advantages: can be tailored for site's actual job mix
 Problems: It can be expensive to do in time and/.or space (storing all the

observations).
(3) implementation - implement the scheduling algorithm and put it into the

system. Then watch the results.
Problems: It can be quite expensive to modify the system and mollify the
users; also, users can quickly learn how to work around the scheduling
algorithm, eg., if short jobs get higher priority, they will split longer jobs up.
Advantage: it is completely accurate.

(4) queueing theory – represent the system mathematically. Usually, you
assume that processes arrival times are exponentially distributed. Let a be

the arrival rate, so the average time between arrivals is
1
a ; this means:

• when a process arrives, the next one will arrive within time t with
probability 1 – e–at; in other words,

• the probability that k processes will arrive within 1 time unit is e–aa
k

k!
 .

Why assume an exponential distribution? Two reasons:
• It's easy to deal with mathematically.
• It reflects the way processes arrive in practice.
We can also assume the processes' service times are exponentially
distributed with parameter b, so:
• the probability that k processes will be serviced within 1 time unit is e–

bbk

k!
 .

The saturation level r =
a
b indicates how busy the computer is on the

average:
r = 0 £ new processes never arive, so the machine is idle
r = 1 £ processes arrive on the average at exactly the same rate as they can

be finished
r > 1 £ processes come in faster than they can be served; hence the ready

list is expected to get longer and longer.
example (Little's Law): Let:
 L be the mean queue length (excluding the job currently being serviced);
W be the mean waiting time in the queue;
a be the mean arrival rate for new jobs into the queue (ie, the units might

be jobs/second)
Hence you expect that during time W, aW new jobs arrive. Now assume
the system is in a “steady state;” then the number of jobs leaving the queue
is the same as the number of jobs arriving, so

L = aW
This is Little's Law, and it applies to any arrival distribution and scheduling
algorithm. For example, say jobs arrive at the mean rate of 7 jobs per
second, and there are normally 14 jobs in the queue; hence

a = 7
jobs
sec , L = 14 jobs £ W =

L
a =

14
7 sec = 2 seconds.

So the mean waiting time in the queue is 2 seconds per job.

TTyyppeess ooff SScchheedduulleerrss CChhaarrtt

Introduction
This chart shows the function of each of the three types of schedulers (long-
term, short-term, and medium-term) for each of three types of operating systems
(batch, interactive, and real-time).

Chart

job admission,
based on charac-
teristics and
resource needs

sessions and pro-
cesses normally
accepted unless
capacity reached

processes either
permanent or
accepted at once

usually none -
jobs remain in
storage until
done

processes never
swapped

processes swapped
when necessary

processes sched-
uled by priority;
continue until
wait voluntarily,
request service,
are terminated

processes sched-
uled on rotating
basis; continue
until service
requested, time
quantum expires,
preempted

scheduling based
on strict priority
with immediate
preemption;
may time-share
among equal
priorities

batch interactive real-time

long-
term

medium-
term

short-
term

From
Malcolm G. Lane and James D. Mooney, A Practical Approach to Operating
Systems, Boyd and Fraser Publishing Company, Boston, MA ©1988, page 168.

JJoobb SScchheedduulliinngg AAllggoorriitthhmmss

Introduction
This handout shows how the various job scheduling algorithms work.

First Come, First Serve (FCFS)

This policy services jobs in the order they arrive.
job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 0 10 10 0 1.0
B 1 29 10 39 38 9 1.3
C 2 3 39 42 40 37 13.3
D 3 7 42 49 46 39 6.6
E 4 12 49 61 57 45 4.8
mean 38 26 5.4

Shortest Job Next (SJN)

This policy services the shortest job next.
job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 0 10 10 0 1.0
B 1 29 32 61 60 31 2.1
C 2 3 10 13 11 8 3.7
D 3 7 13 20 17 10 2.4
E 4 12 20 32 28 16 2.3
mean 25 13 2.3

Pre-emptive Shortest Job Next (PSJN)

This policy services the shortest job next, pre-emptively.
job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 0 2 pre-empted by C
 8 12 20 20 10 2.0
B 1 29 32 61 60 31 2.1
C 2 3 2 5 3 0 1.0
D 3 7 5 12 9 2 1.3
E 4 12 20 32 28 16 2.3
mean 24 12 1.7

Highest Response Ratio Next (HRN)
This policy services the job with the highest response ratio next.

job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 0 10 10 0 1.0
B 1 29 32 61 60 31 2.1
C 2 3 10 13 11 8 3.7
D 3 7 13 20 17 10 2.4
E 4 12 20 32 28 16 2.3
mean 25 13 2.3

Round Robin (RR)

This policy services jobs for a fixed quantum (here, 5).
job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 0 5 end of quantum; B starts
 5 23 28 28 18 2.8
B 1 29 5 10 end of quantum; C starts
 24 28 33 end of quantum; D starts
 19 40 45 end of quantum; E starts
 14 47 61 60 31 2.1
C 2 3 10 13 11 8 3.7
D 3 7 13 18 end of quantum; E starts
 2 33 35 32 25 4.6
E 4 12 18 23 end of quantum; A starts
 7 35 40 end of quantum; B starts
 2 45 47 43 31 3.5
mean 35 23 3.3

Selfish Round Robin (SRR)
This policy services jobs for a fixed quantum (here, 1). The priority of new

processes increases at a rate of 3 per quantum, of accepted processes at a rate
of 2 per quantum. Note that new process promotions from the new queue to the
ready queue precede quanta expirations.

time job ready queue new queue
 running (at end of interval) (at end of interval)
0-1 A A(2) B(0)
1-2 A A(4) B(3), C(0)
2-3 A B(6), A(6) C(3), D(0)
3-4 B A(8), B(8) C(6), D(3), E(0)
4-5 A B(10),A(10) C(9), D(6), E(3)
5-6 B A(12), C(12), B(12) D(9), E(6)
6-7 A C(14), B(14), A(14) D(12), E(9)
7-8 C B(16), A(16), C(16) D(15), E(12)
8-9 B A(18), C(18), D(18), B(18) E(15)
9-10 A C(20), D(20), B(20), A(20) E(18)
10-11 C D(22), B(22), A(22), C(22) E(21)
11-12 D B(24), A(24), C(24), E(24),
 D(24)

… round robin from here on …
The relevant numbers (ignoring start and finish time) are:
job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 … … 27 17 2.7
B 1 29 … … 60 31 2.1
C 2 3 … … 15 12 5.0
D 3 7 … … 33 26 4.7
E 4 12 … … 44 32 3.7
mean 35.8 23.6 3.6

Multilevel Feedback (MLFB)
The variant of this class of scheduling algorithms uses three levels:

• processes at level 1 are scheduled round robin; the relevant quantum is 2,
and when a quantum expires the job is moved to level 2.

• processes at level 2 are scheduled round robin; the quantum is 4, and
processes are allowed 2 quanta before being moved to level 3.

• processes at level 3 are serviced first come first serve.
The jobs A, B, C, D, and E have been augmented by F, a 1-second job

arriving at time 13, and G, an 11-second job arriving at time 50. These are to
demonstrate that quanta are usually not interrupted.

In what follows, the number in parentheses in the comment field is the
remaining service time for the job.

 time level 1 level 2 level 3 comments
 0 A — — A(10) arrives, runs
 1 AB — — B(29) arrives, A continues quantum
 2 BC A — C(3) arrives, A's quantum expires (8), moves

to level 2, B runs
 3 BCD A — D(7) arrives, B continues quantum
 4 CDE AB — E(12) arrives, B's quantum expires (27),

moves down, C runs
 6 DE ABC — C's quantum expires (1), moves down, D

runs
 8 E ABCD — D's quantum expires (5), moves down, E runs
 10 — ABCDE — E's quantum expires (10), moves down, A

runs from level 2 (level 1 is empty)
 13 F ABCDE — F(1) arrives, A's quantum continues
 14 F ABCDE — A's quantum expires (4), F runs (at level 1)
 15 — ABCDE — F finishes, B runs from level 2 (level 1 is

empty)
 19 — ABCDE — B's quantum expires (23), C runs
 20 — ABDE — C finishes, D runs
 24 — ABDE — D's quantum expires (1), E runs
 28 — ABDE — E's quantum expires (6), A runs
 32 — BDE — A finishes, B runs
 36 — DE B B's quantum expires (19), moves down, D

runs
 37 — E B D finishes, E runs
 41 — — BE E's quantum expires (2), moves down, B runs

from level 3 (since there is nothing in higher
levels)

 50 G — BE G arrives(11), B continues to run
 60 G — E B finishes, G runs (since it is in the highest

level)
 62 — G E G's quantum expires (9), moves down, G

runs from level 2
 66 — G E G's quantum expires (5), G runs
 70 — — EG G's quantum expires (1), moves down, E

runs
 72 — — G E finishes, G runs
 73 — — — G finishes

The relevant numbers (ignoring start and finish time) are:
job arrival service start finish turnaround waiting response
name time time time time time time ratio
A 0 10 0 2 preempted by B
 8 10 14 preempted by F
 4 28 32 32 22 3.2
B 1 29 2 4 preempted by C
 27 15 19 preempted by C
 23 32 36 preempted by D
 19 41 60 59 30 2.0
C 2 3 4 6 preempted by D
 1 19 20 18 15 6.0
D 3 7 6 8 preempted by E
 5 20 24 preempted by E
 1 36 37 34 27 4.9
E 4 12 8 10 preempted by A
 10 24 28 preempted by A
 6 37 41 preempted by B
 2 70 72 68 56 5.7
F 13 1 14 15 2 1 2.0
G 50 11 60 70 preempted by E
 1 72 73 23 12 2.1
mean 33.7 23.3 3.7

