ECS150 Discussion Section

Sophie Engle
(February 18/20 2004)

= Dining Philosophers Problem
¢ Solve using mutual exclusion
¢ Solve using semaphores
¢ Solve using monitors
" Resources:
¢ Section 2.2 in book (Tanenbaum)

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 2]

Dihing Philosophers

= Situation:

¢ Five philosophers at
table

¢+ Want to eat spaghetti
¢ Must have 2 forks to eat
¢ Only 5 forks at the table

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 3]

Dining Philosophers

= Each philosopher:
¢ Must grab fork one at a
time
¢ Can act at any time

(concurrently with other
philosophers)

¢ Is either thinking, hungry,
or eating

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 4]

= Everyone follows:
¢ Grab left fork
¢ Grab right fork
¢+ Eat spaghetti

= |f fork not available
wait until available

" Release fork when
done eating

= What if all grab left
at same time?

J

fork

[slide 5]

[discussion section - ecs150 operating systems - winter quarter 2004]

ghetti Situation 1

#define N 5

void philosopher(int 1) {
while(TRUE) {

think();

take_fork(1); // left fork
take_fork((i+1) % N); // right fork
eat();

put_fork(i);
put_fork((i+1) % N);

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 6]

DEADLOCK!

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 7]

= One person follows:
¢ Grab right fork
¢ Grab left fork
¢+ Eat spaghetti

= Everyone else follows:
¢ Grab left fork
¢ Grab right fork
¢+ Eat spaghetti

= Avoids deadlock!

¢ Uses hierarchical
allocation

¢ Must grab lower
numbered fork first!

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 8]

grabs right fork

[discussion section - ecs150 operating systems - winter quarter 2004]

[slide 9]

waits for left fork

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 10]

grabs left fork

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 11]

grabs left fork

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 12]

grabs left fork

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 13]

DEADLOCK
AVOIDED

grabs left fork

[discussion section - ecs150 operating systems - winter quarter 2004]

[slide 14]

Eﬂ Ing SpaghettProbiem

= Must avoid:
¢ Deadlock
¢ Starvation
= Some tools:
¢ Mutual exclusion

¢ Semaphores
¢ Monitors

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 15]

aphore: Example i

void philosopher(int 1) {
semaphore mutex = 1;

while(TRUE) {
think();

down(&mutex); // enter critical region

take_fork(i);
take_fork((i+1) % N);

eat();

put_fork(i);

put_fork((i+1) % N);

up(&mutex); // exit critical region

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 16]

becomes hungry

[discussion section - ecs150 operating systems - winter quarter 2004]

[slide 17]

becomes hungry

acquires
semaphore

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 18]

waits for
semaphore

— | grabs forks (one
at a time)

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 19]

becomes hungry

waits for
semaphore

eats

[discussion section - ecs150 operating systems - winter quarter 2004]

[slide 20]

acquires
semaphore

v =
X B SR
& = . (s
£ 5
[LA o]
i ’
e
a [} k!
L3 N { ' w
e ol L
i i i,] Y
o / =]
: b3 ¥
o e R
i 1
i} 4
'
n

waits for
semaphore

— | releases forks
and semaphore

[discussion section - ecs150 operating systems - winter quarter 2004]

[slide 21]

Semaphore: Exampleri

= Prevents deadlock
= Only allows one philosopher to eat at a time

= Can improve efficiency?

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 22]

= Each person is either:
¢ Thinking
¢ Hungry -or-
¢ Eating

= Can eat only if neither
neighbor is eating
¢ Uses semaphores
¢ See book p78 for code

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 23]

hungry

thinking

thinking

thinking

Al OIND|—

thinking

becomes hungry

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 24]

becomes
hungry

grabs forks, eats

eating

thinking

hungry

thinking

Al OIND|—

thinking

[slide 25]

[discussion section - ecs150 operating systems - winter quarter 2004]

[discussion section - ecs150 operating systems - winter quarter 2004]

1 | eating
2 | hungry
grabs forks, 3 | eating
ELE 4 | thinking
5 | thinking

becomes hungry

[slide 26]

[discussion section - ecs150 operating systems - winter quarter 2004]

eating

hungry

eating

thinking

Al OIND|—

thinking

waits until

neighbors done

[slide 27]

cobegin(i:= 0 to N - 1)

Itor: Example

do true >

od
coend

[discussion section - ecs150 operating systems - winter quarter 2004]

think

get forks
dp.getforks(1);

#eat

release forks
dp.relforks(i);

[slide 28]

Lo Examplierid

monitor dp
N - 1 forks, initialized to 2
var forks[O : N -1] : int := ([N] 2)

condition variable (indicates both forks free)
var both_free[0 : N - 1] : condition

right[1] 1s philosopher 1’s right neighbor

var right{ 0 : N- 1] : int := (N -1, 0, 1, ..., N-2)
left[1] i1s philosopher i’s left neighbor
var left[0O : N-11] : int := (1, ..., N-1, 0)

end

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 29]

Lo Examplierid

monitor dp

grabs both forks, or waits until both free
proc getforks(1 : int)
1f forks[i1] < 2 = wait(both_free[1]) fi
forks[right[i]]1--
forks[Teft[i1] 1--
end

end

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 30]

Lo Examplierid

monitor dp

release both forks, signals if both free
proc relforks(1 : int)

forks[right[i] 1++

forks[left[i] 1++

1t forks[right[i]] = 2
- signal(both_free[right[i]]) fi

1t forks[left[i]] = 2
- signal (both_free[left[1]]) f1

end
end

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 31]

Monitors Example i

= Starvation still possible!
= Rest on chalkboard...

[discussion section - ecs150 operating systems - winter quarter 2004] [slide 32]

