ECS150 Discussion Section

Sophie Engle (February 18/20 2004)

Agenda

- Dining Philosophers Problem
 - Solve using mutual exclusion
 - Solve using semaphores
 - Solve using monitors
- Resources:
 - Section 2.2 in book (Tanenbaum)

Dining Philosophers

Situation:

- Five philosophers at table
- Want to eat spaghetti
- Must have 2 forks to eat
- Only 5 forks at the table

Dining Philosophers

- Each philosopher:
 - Must grab fork one at a time
 - Can act at any time (concurrently with other philosophers)
 - Is either thinking, hungry, or eating

- Everyone follows:
 - Grab left fork
 - Grab right fork
 - Eat spaghetti
- If fork not available, wait until available
- Release fork when done eating
- What if all grab left fork at same time?

```
#define N 5
void philosopher( int i ) {
      while( TRUE ) {
            think();
            take_fork( i );
                                          // left fork
            take_fork( (i+1) % N );
                                         // right fork
            eat();
            put_fork(i);
            put_fork( (i+1) % N );
      }
```


- One person follows:
 - Grab right fork
 - Grab left fork
 - Eat spaghetti
- Everyone else follows:
 - Grab left fork
 - Grab right fork
 - Eat spaghetti
- Avoids deadlock!
 - Uses hierarchical allocation
 - Must grab lower numbered fork first!

Solving Spaghetti Problem

- Must avoid:
 - Deadlock
 - Starvation
- Some tools:
 - Mutual exclusion
 - Semaphores
 - Monitors

```
void philosopher( int i ) {
      semaphore mutex = 1;
      while( TRUE ) {
            think();
            down( &mutex ); // enter critical region
            take_fork( i );
            take_fork( (i+1) % N );
            eat();
            put_fork(i);
            put_fork( (i+1) % N );
            up( &mutex );  // exit critical region
      }
```


- Prevents deadlock
- Only allows one philosopher to eat at a time

Can improve efficiency?

- Each person is either:
 - Thinking
 - Hungry -or-
 - Eating
- Can eat only if neither neighbor is eating
 - Uses semaphores
 - See book p78 for code

#	state
1	hungry
2	thinking
3	thinking
4	thinking
5	thinking

#	state
1	eating
2	thinking
3	hungry
4	thinking
5	thinking

#	state
1	eating
2	hungry
3	eating
4	thinking
5	thinking

waits until neighbors done

```
cobegin( i:= 0 to N - 1 )
   do true →
      # think
      # get forks
      dp.getforks( i );
      #eat
      # release forks
      dp.relforks( i );
   od
coend
```

```
monitor dp
   # N - 1 forks, initialized to 2
   var forks[0:N-1]:int := ([N] 2)
  # condition variable (indicates both forks free)
   var both_free[0:N-1]: condition
   # right[i] is philosopher i's right neighbor
   var right[0: N - 1]: int := (N - 1, 0, 1, ..., N - 2)
   # left[i] is philosopher i's left neighbor
   var left[0:N-1]:int:=(1,...,N-1,0)
end
```

[discussion section · ecs150 operating systems · winter quarter 2004]

```
monitor dp
   # grabs both forks, or waits until both free
   proc getforks( i : int )
       if forks[i] < 2 → wait( both_free[i] ) fi</pre>
       forks[ right[i] ]--
       forks[ left[i] ]--
   end
end
```

[slide 30]

discussion section · ecs150 operating systems · winter quarter 2004]

```
monitor dp
   # release both forks, signals if both free
   proc relforks( i : int )
      forks[ right[i] ]++
      forks[ left[i] ]++
      if forks[ right[i] ] = 2
          → signal( both_free[ right[i] ] ) fi
      if forks[ left[i] ] = 2
          → signal( both_free[ left[i] ] ) fi
   end
end
```

[slide 31]

- Starvation still possible!
- Rest on chalkboard...