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= Dining Philosophers Problem
¢ Solve using mutual exclusion
¢ Solve using semaphores
¢ Solve using monitors
" Resources:
¢ Section 2.2 in book (Tanenbaum)
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Dihing Philosophers

= Situation:

¢ Five philosophers at
table

¢+ Want to eat spaghetti
¢ Must have 2 forks to eat
¢ Only 5 forks at the table
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Dining Philosophers

= Each philosopher:
¢ Must grab fork one at a
time
¢ Can act at any time

(concurrently with other
philosophers)

¢ Is either thinking, hungry,
or eating
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= Everyone follows:
¢ Grab left fork
¢ Grab right fork
¢+ Eat spaghetti

= |f fork not available
wait until available

" Release fork when
done eating

= What if all grab left
at same time?

J

fork
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[ discussion section - ecs150 operating systems - winter quarter 2004 ]



ghetti Situation 1

#define N 5

void philosopher( int 1 ) {
while( TRUE ) {

think();

take_fork( 1 ); // left fork
take_fork( (i+1) % N ); // right fork
eat();

put_fork(i);
put_fork( (i+1) % N );
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DEADLOCK!
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= One person follows:
¢ Grab right fork
¢ Grab left fork
¢+ Eat spaghetti

= Everyone else follows:
¢ Grab left fork
¢ Grab right fork
¢+ Eat spaghetti

= Avoids deadlock!

¢ Uses hierarchical
allocation

¢ Must grab lower
numbered fork first!
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grabs right fork
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waits for left fork
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grabs left fork
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grabs left fork

[ discussion section - ecs150 operating systems - winter quarter 2004 ] [ slide 12 ]



grabs left fork
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DEADLOCK
AVOIDED

grabs left fork
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Eﬂ Ing SpaghettProbiem

= Must avoid:
¢ Deadlock
¢ Starvation
= Some tools:
¢ Mutual exclusion

¢ Semaphores
¢ Monitors
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aphore: Example i

void philosopher( int 1 ) {
semaphore mutex = 1;

while( TRUE ) {
think();

down( &mutex ); // enter critical region

take_fork( i );
take_fork( (i+1) % N );

eat();

put_fork(i);

put_fork( (i+1) % N );

up( &mutex ); // exit critical region
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becomes hungry
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becomes hungry

acquires
semaphore
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waits for
semaphore

— | grabs forks (one
at a time)
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becomes hungry

waits for
semaphore

eats
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acquires
semaphore
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waits for
semaphore
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Semaphore: Exampleri

= Prevents deadlock
= Only allows one philosopher to eat at a time

= Can improve efficiency?
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= Each person is either:
¢ Thinking
¢ Hungry -or-
¢ Eating

= Can eat only if neither
neighbor is eating
¢ Uses semaphores
¢ See book p78 for code
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hungry

thinking

thinking

thinking

Al OIND|—

thinking

becomes hungry
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becomes
hungry

grabs forks, eats

eating

thinking

hungry

thinking

Al OIND|—

thinking
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1 | eating
2 | hungry
grabs forks, 3 | eating
ELE 4 | thinking
5 | thinking

becomes hungry
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eating

hungry

eating

thinking

Al OIND|—

thinking

waits until

neighbors done
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cobegin( i:= 0 to N - 1)

Itor: Example

do true >

od
coend
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# think

# get forks
dp.getforks( 1 );

#eat

# release forks
dp.relforks( i );
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Lo Examplierid

monitor dp
# N - 1 forks, initialized to 2
var forks[ O : N -1 ] : int := ( [N] 2 )

# condition variable (indicates both forks free)
var both_free[ 0 : N - 1 ] : condition

# right[1] 1s philosopher 1’s right neighbor

var right{ 0 : N- 1] : int := (N -1, 0, 1, ..., N-2)
# left[1] i1s philosopher i’s left neighbor
var left[ 0O : N-11] : int := (1, ..., N-1, 0)

end
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Lo Examplierid

monitor dp

# grabs both forks, or waits until both free
proc getforks( 1 : int )
1f forks[i1] < 2 = wait( both_free[1] ) fi
forks[ right[i] ]1--
forks[ Teft[i1] 1--
end

end
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Lo Examplierid

monitor dp

# release both forks, signals if both free
proc relforks( 1 : int )

forks[ right[i] 1++

forks[ left[i] 1++

1t forks[ right[i] ] = 2
- signal( both_free[ right[i] ] ) fi

1t forks[ left[i] ] = 2
- signal ( both_free[ left[1] ] ) f1

end
end
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Monitors Example i

= Starvation still possible!
= Rest on chalkboard...
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