Section 1.3

1. Write the following statements in good English. Use the following variables and predicates:

z: people
y: stores
S(z,y “z shops in y”

Y):
T(z): “xisa student”

(a) Yy S(Margaret,y)

(b) 3y vz S(z,y)

(c) Vo 3y S(z,y)

(@) TV [T(x) — —S(z,y)
(e) Vy 3z [T(x) A S(z,y)]

Solution
(a) Margaret shops in every store.
(b

¢) Everyone shops somewhere.

)
()
(d)
)

(e) Every store has at least one student who shops in it.

There is a store in which everyone shops.

There is a store in which no student shops.

2. Write the following statements in good English. Use the following variables and predicates:

r: people
y: stores
S(z,y): “x shops in y”
T(x) “xisa student”

(a) Will shops in Al’s Record Shoppe.

(b) There is no store that has no students who shop there.

(¢) The only shoppers in some stores are students.

Solution
(a) S(Will, Al's Record Shoppe)
(b) =3yVa[T(z) — ~S(z,y)]

(¢) 3yve[S(z,y) — T(z)]

Discrete Mathematics: Extra Exercises

3. Write the following statements in good English. Use the following variables and predicates:

x: students

y: courses

F(x): “zis a Freshman”

C(x): “x is a Computer Science major”
M(y): “yis a math course”

): “x is taking y

M(y) NT(z,y)]

y 3 [~(M(y) AT(z,y))]
—3z [F(z) AVy [M(y) — T(z,y)]]

< < W
)
L
<
Q
&

1

Solution

a) Ben is a Computer Science major.

(
(b

Some Freshman is taking Calculus 3.

)
)
(¢) Every Computer Science major is taking at least one math course.
(d) Every course has a student in it who is not a Math major

)

(e) No Freshman is taking every math course.

4. Consider the following lines of code from a C++ program:

if (1 (x!=0 && y/x < 1) || x==0)
cout << “True”;

else

cout << “False”

(a) Express the code in this statement as a compound statement using the logical connectives
-, V, A, —, and the following predicates

E(z): =0
Ly /o<l
A(z): “z is assigned to cout”

where z and y are integers and z is a Boolean variable (with values True and False).

(b) Use the laws of propositional logic to simplify the statement by expressing it in a simpler
form.

(¢) Translate the answer in part (b) back into C++.

Discrete Mathematics: Extra Exercises -2-

Solution

(a) First we insert the predicates into the code, obtaining

if (V('E(z) && L(x,y)) || E(x))
A(True)
else

A(False).

Next change to the usual logical connective symbols, keeping in mind that C++ code of the
form “if p then ¢ else 77 is really a statement of the form (p — q) A (—p — 7):

[~ (= E(z) A L(z,y)) V E(z)] —
A(True)
A
[~ (=E(x) A L(z,y)) V E(z)] —
A(False), or
([ﬁ (~E(z) A L(z,y)) V B(z)] — A(True)) A (ﬁ [~ (- E(z) A L(z,y)) V E(z)] — A(False)).

(b) Using DeMorgan’s law on the negation of the conjunction, the statement becomes

([(E(x) V =L(z,y) V E(z)] — A(True)) A (ﬁ [(E(z) V = L(z,y)) V E(z)] — A(False)),
which can be simplified to give
((E(x) V =L(z,y)) — A(True)) A (ﬁ (E(z) V - L(z,y)) — A(False)).

(¢) Translating the statement in (b) into C++ yields

if (x==0 || y/x >= 1)
cout << “True”

else

cout << “False”.

Discrete Mathematics: Extra Exercises

