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Extra Examples
Chinese Remainder Theorem and Solving Systems of Linear Congruencies

Introduction

In this guide, I will go over how to solve systems of linear congruencies using the Chinese Remainder
Theorem. Before that however, I give quick examples on how to reduce a mod m when a > m and
find the modular inverse of a mod m.

Reducing a mod m

Sometimes, we have an equation a mod m where a > m. This can make finding inverses and solving
systems of linear congruencies more difficult to work with. In these cases, you should first reduce
a mod m. To do this, we want to find an integer b such that a ≡ b mod m where b < m.

Confused? Too many variables? How about a specific example!

Let a = 176 and m = 14, giving us the equation 176 mod 14. Since 176 > 14, lets try to reduce
this to something smaller. The first step is to rewrite 176 in the form:

a = mq + r

176 = 14 ∗ q + r

where q is a quotient and r is the remainder. We can find q and r as follows:

q =
⌊ a

m

⌋
=

⌊
176
14

⌋
= b12.57 . . . c = 12

r = a−mq = 176− 14 ∗ 12 = 176− 168 = 8

Tada! Our answer is r. Therefore, 176 mod 12 = 8. So instead of writing 176 mod 12 we can write
8 mod 12 and work with a much smaller number.

How about another example? This time, we want to reduce 4 mod 3. Solving everything we get:

q =
⌊

4
3

⌋
= b1.333 . . . c = 1

r = 4− 3 ∗ 1 = 1

Thus, we can rewrite 4 as 4 = 3 ∗ 1 + 1. Therefore, 1 ≡ 4 mod 3.

Okay, here is a recap all of the steps. To reduce an equation a mod m where a > m:

1. Rewrite a as a = mq + r where q = ba/mc and r = a−mq.

2. This gives us r = a mod m, or equivalently, a ≡ r mod m.

Or... just use a calculator :)

Extra Examples page 1



ECS 20: Discrete Mathematics Spring 2007

Finding Modular Inverses (Examples)

To find the modular inverse of a mod m, we are looking for an integer s such that s ∗a ≡ 1 mod m.
(I’m assuming you have already reduced a mod m if a > m.)

First, find the gcd(a,m) using the Euclidean Algorithm. This time, I’m going to make sure I match
the format in the book. Let r0 = m and r1 = a. Then your equations should always be in the form:

r0 = r1 ∗ q1 + r2

r1 = r2 ∗ q2 + r3

r2 = r3 ∗ q3 + r4

...
rn−2 = rn−1 ∗ qn−1 + rn

rn−1 = rn ∗ qn

If rn = 1 then gcd(a,m) = 1 and we can find an inverse. Discard the last equation rn−1 to get:

r0 = r1 ∗ q1 + r2

r1 = r2 ∗ q2 + r3

r2 = r3 ∗ q3 + r4

...
rn−2 = rn−1 ∗ qn−1 + rn = rn−1 ∗ qn−1 + 1

What you have should match this, except you’ll actually have numbers instead of variables every-
where. Put back in every variable ri except rn. Then replace r0 with the variable m and r1 with
the variable a. (We’ll go over a numeric example in a moment.)

The next step is to rewrite everything in the form ri = . . . such that we get:

a = m ∗ q1 + r2 −→ r2 = a−m ∗ q1

m = r2 ∗ q2 + r3 −→ r3 = m− r2 ∗ q2

r2 = r3 ∗ q3 + r4 −→ r4 = r2 − r3 ∗ q3

...
...

...
rn−2 = rn−1 ∗ qn−1 + 1 −→ 1 = rn−2 − rn−1 ∗ qn−1

Then, starting with the last equation, backwards substitute until you get something in the form:

1 = s ∗ a + t ∗m

Once that happens, we know our modular inverse of a mod m is s.

I don’t know about you, but all of these variables are making my head hurt. How about a real
example!
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Let a = 34 and m = 55. We want to find the modular inverse of 34 mod 55.

Step 1: First we need to use the Euclidean Algorithm to find the gcd(34, 55). On the left column
I’ll just show what the variables are, and on the right column will be the actual values:

r0 = r1 ∗ q1 + r2 −→ 55 = 34 ∗ q1 + r2 −→ 55 = 34 ∗ 1 + 21
r1 = r2 ∗ q2 + r3 −→ 34 = 21 ∗ q2 + r3 −→ 34 = 21 ∗ 1 + 13
r2 = r3 ∗ q3 + r4 −→ 21 = 13 ∗ q3 + r4 −→ 21 = 13 ∗ 1 + 8
r3 = r4 ∗ q4 + r5 −→ 13 = 8 ∗ q4 + r5 −→ 13 = 8 ∗ 1 + 5
r4 = r5 ∗ q5 + r8 −→ 8 = 5 ∗ q5 + r6 −→ 8 = 5 ∗ 1 + 3
r5 = r6 ∗ q6 + r7 −→ 5 = 3 ∗ q6 + r7 −→ 5 = 3 ∗ 1 + 2
r6 = r7 ∗ q7 + r8 −→ 3 = 2 ∗ q7 + r8 −→ 3 = 2 ∗ 1 + 1
r7 = r8 ∗ q8 −→ 2 = 1 ∗ q8 −→ 2 = 1 ∗ 2

Wow, I picked a bad pair of numbers. That took forever. Well, now it is time for the next step.

Step 2: Well, we can see our last remainer r8 = 1. This means gcd(34, 55) = 1 and there is an
inverse. First, we ditch the last equation r7 to get:

55 = 34 ∗ 1 + 21
34 = 21 ∗ 1 + 13
21 = 13 ∗ 1 + 8
13 = 8 ∗ 1 + 5
8 = 5 ∗ 1 + 3
5 = 3 ∗ 1 + 2
3 = 2 ∗ 1 + 1

Now we reassign the variables. We put back every ri except for the last rn = 1 (which in this case
is r8), and then replace r0 with m and r1 with a:

55 = 34 ∗ 1 + 21 −→ r0 = r1 ∗ 1 + r2 −→ m = a ∗ 1 + r2

34 = 21 ∗ 1 + 13 −→ r1 = r2 ∗ 1 + r3 −→ a = r2 ∗ 1 + r3

21 = 13 ∗ 1 + 8 −→ r2 = r3 ∗ 1 + r4 −→ r2 = r3 ∗ 1 + r4

13 = 8 ∗ 1 + 5 −→ r3 = r4 ∗ 1 + r5 −→ r3 = r4 ∗ 1 + r5

8 = 5 ∗ 1 + 3 −→ r4 = r5 ∗ 1 + r6 −→ r4 = r5 ∗ 1 + r6

5 = 3 ∗ 1 + 2 −→ r5 = r6 ∗ 1 + r7 −→ r5 = r6 ∗ 1 + r7

3 = 2 ∗ 1 + 1 −→ r6 = r7 ∗ 1 + 1 −→ r6 = r7 ∗ 1 + 1
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Step 3: Now we rearrange. We rewrite every equation to be in the form ri = . . . and get:

m = a ∗ 1 + r2 −→ r2 = m− a

a = r2 ∗ 1 + r3 −→ r3 = a− r2

r2 = r3 ∗ 1 + r4 −→ r4 = r2 − r3

r3 = r4 ∗ 1 + r5 −→ r5 = r3 − r4

r4 = r5 ∗ 1 + r6 −→ r6 = r4 − r5

r5 = r6 ∗ 1 + r7 −→ r7 = r5 − r6

r6 = r7 ∗ 1 + 1 −→ 1 = r6 − r7

Step 4: Finally, we use backwards substitution and get:

1 = r6 − r7

= r6 − (r5 − r6) substitute in r7

= 2r6 − r5 simplify
= 2(r4 − r5)− r5 substitute in r6

= 2r4 − 3r5 simplify
= 2r4 − 3(r3 − r4) substitute in r5

= 5r4 − 3r3 simplify
= 5(r2 − r3)− 3r3 substitute in r4

= 5r2 − 8r3 simplify
= 5r2 − 8(a− r2) substitute in r3

= 13r2 − 8a simplify
= 13(m− a)− 8a substitute in r2

= 13m− 21a

Finally, we have the equation in the form we want:

1 = −21 ∗ a + 13 ∗m

...almost. We can’t have a negative inverse. So time to make it positive:

−21 mod 55 ≡ −21 + 55 mod 55 ≡ 34 mod 55

Therefore our inverse s = 34. If you plug 34 ∗ 34 mod 55 in your calculator, you’ll get 1!

Okay, so the steps are:

1. Reduce a mod m if necessary.

2. Find the gcd(a,m) using the Euclidean Algorithm.

3. If rn = 1 we know gcd(a,m) = 1 and there is an inverse.
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4. Reassign the variables r1, r2, . . . , rn−1 (all remainders except rn).

5. Reassign the variables r0 to m and r1 to a.

6. Rearrange the equations into the form ri = ri−2 − ri−1 ∗ qi−1.

7. Backwards substitute starting with rn until we get an equation in the form 1 = s ∗ a + t ∗m.

8. If s is negative, add m until it is positive!

After all of these steps, we know the inverse is s. Just remember, reassign, rearrange, and substitute!

Solving Systems of Congruencies Using the Chinese Remainder Theorem

Here are the basic steps. This is meant more for a reference. For more detail, skip to one of the
examples.

Given a system of congruencies where m1,m2, . . . ,mn are pairwise relatively prime positive integers:

x ≡ a1 mod m1

x ≡ a2 mod m2

...
x ≡ an mod mn

Using the Chinese Remainder Theorem, if we solve the following:

m =
n∏

i=1

mi = m1m2 · · ·mn

Mi = m/mi

Misi = 1 mod mi (i.e. si is the modular inverse of Mi mod mi )

x =
n∑

i=1

aiMisi = a1M1s1 + a2M2s2 + · · ·+ anMnyn

then we know that x mod m is the unique solution to our system of congruencies.

Solving Systems of Congruencies: Example 1

Example #19 on page 245. Find all solutions to:

x ≡ 1 mod 2
x ≡ 2 mod 3
x ≡ 3 mod 5
x ≡ 4 mod 11

Before we start, let’s be clear on what our variables are:

a1 = 1 a2 = 2 a3 = 3 a4 = 4
m1 = 2 m2 = 3 m3 = 5 m4 = 11
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Then, solve for m:

m = 2 ∗ 3 ∗ 5 ∗ 11 = 330

Next, lets find all the Mi terms:

M1 = m/m1 M2 = m/m2 M3 = m/m3 M4 = m/m4

= 330/2 = 330/3 = 330/5 = 330/11
= 165 = 110 = 66 = 30

Now the tough part! We need to find the inverses s1, s2, s3, and s4.

The value s1 needs to be the modular inverse of M1 mod m1. In this case, we need the inverse
of 165 mod 2. Since 165 > 2 we should reduce this first. We can write 165 = 2 ∗ 82 + 1 meaning
165 mod 2 = 1. Therefore 165 mod 2 ≡ 1 mod 2, and we can alternatively find the inverse of
1 mod 2. This is much easier! We just need a value s1 such that 1 ∗ s1 ≡ 1 mod 2. In this case, we
can see that s1 = 1 without having to use the Euclidean Algorithm and backwards substitution.

Next, we need s2 to be the modular inverse of 110 mod 3. If we reduce this we see 110 mod 3 ≡
2 mod 3. Therefore we just need the inverse to 2 mod 3. Again, this is much easier to find. In fact,
s2 = 2 but let’s work through the algorithm to be sure. (More details on the algorithm is at the
end of this document.)

Using the Euclidean Algorithm for the gcd(2, 3) we get:

3 = 2 ∗ 1 + 1
2 = 1 ∗ 2

Therefore gcd(2, 3) = 1 and we can find the inverse. We drop the last equation, and reassign the
variables to get:

3 = 2 ∗ 1 + 1 −→ m2 = a2 ∗ 1 + 1

Rearranged we get:

1 = m2 − a2

From this, we can tell that s2 = −1?? Ew! Negative numbers! Whenever you come across a
negative number modulo m2, keep adding m2 until the number is positive. Therefore:

−1 mod 3 ≡ −1 + 3 mod 3 ≡ 2 mod 3

Tada! We have a positive number now, and s2 = 2.

Tired yet? But we have 2 more inverses to find! We need s3 to be the modular inverse of 66 mod 5.
Reduced, we get 66 mod 5 ≡ 1 mod 5. Again, we luck out with an easy one to find. The inverse
s3 = 1 in this case.
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Finally, s4 must be the modular inverse of 30 mod 11. Reduced, we get 30 mod 11 = 8 mod 11.
Boo... looks like it is time for our fancy algorithm! (You are excited, I can tell.)

First, find the gcd(8, 11) using the Euclidean Algorithm:

11 = 8 ∗ 1 + 3
8 = 3 ∗ 2 + 2
3 = 2 ∗ 1 + 1
2 = 1 ∗ 2

The gcd(8, 11) = 1 so time to find the inverse. Drop the last equation and begin to reassign
variables:

11 = 8 ∗ 1 + 3 −→ r0 = r1 ∗ 1 + r2 −→ m4 = a4 ∗ 1 + r2

8 = 3 ∗ 2 + 2 −→ r1 = r2 ∗ 2 + r3 −→ a4 = r2 ∗ 2 + r3

3 = 2 ∗ 1 + 1 −→ r2 = r3 ∗ 1 + 1 −→ r2 = r3 ∗ 1 + 1

Next, we rearrange!

m4 = a4 ∗ 1 + r2 −→ r2 = m4 − a4

a4 = r2 ∗ 2 + r3 −→ r3 = a4 − 2r2

r2 = r3 ∗ 1 + 1 −→ 1 = r2 − r3

And now we use backwards substitution to get:

1 = r2 − r3

= r2 − (a4 − 2r2)r2 − a4 + 2r2 = 3r2 − a4

= 3(m4 − a4)− a4 = 3m4 − 3a4 − a4

= −4a4 + 2m4

Again, we get a negative inverse which we don’t want. So we have to make it positive:

−4 mod 11 ≡ −4 + 11 mod 11 ≡ 7 mod 11

Therefore our modular inverse s4 = 7. You can double check this in a calculator, and see that
8 ∗ 7 ≡ 1 mod 11.

At this point we have all of our modular inverses:

s1 = 1 s2 = 2 s3 = 1 s4 = 7
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Finally, we can solve for x:

x =
n∑

i=1

aiMisi

= a1M1s1 + a2M2s2 + a3M3s3 + a4M4s4

= 1 ∗ 165 ∗ 1 + 2 ∗ 110 ∗ 2 + 3 ∗ 66 ∗ 1 + 4 ∗ 30 ∗ 7
= 1643

However, we aren’t done yet! This is a solution modm. So we need to reduce this to get:

x ≡ 1643 mod m ≡ 1643 mod 330 ≡ 323 mod 330

WE ARE DONE! The solution to this system of congruencies is x ≡ 323 mod 330. This means
any number in the form 323 + 330k where k is a positive integer will work. Just try it out on a
calculator!
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