

 1

Recursion

Recursion

• Idea: Some problems can be broken
down into smaller versions of the same
problem

• Example: n!
• 1*2*3*…*(n-1)*n
• n*factorial of (n-1)

Base Case

• 5! = 5*4!
• 4! = 4*3!
• 3! = 3*2!
• 2! = 1*1!
• 1! = 1 Base case – you always need a

terminating condition to end

Function: factorial

int factorial(int n) {
if(n == 1)

return 1;
else

return (n*factorial(n-1));
}

Iterative Factorial

int factorial(int n) {
int i;
int product = 1;
for(i = n; i > 1; i--) {

product = product * i;
}
return product;

}

Comparison

• Why use iteration over recursion or vice
versa?

 2

Linear Recursion

• At most 1 recursive call at each iteration
– Example: Factorial

• General algorithm
– Test for base cases
– Recurse

• Make 1 recursive call
• Should make progress toward the base case

• Tail recursion
– Recursive call is last operation
– Can be easily converted to iterative

Higher-Order Recursion

• Algorithm makes more than one recursive
call

• Binary recursion
– Halve the problem and make two recursive

calls
– Example?

• Multiple recursion
– Algorithm makes many recursive calls
– Example?

Rules of Recursion
1. Base cases. You must always have some

bases cases, which can be solved without
recursion.

2. Making progress. For the cases that are to be
solved recursively, the recursive call must
always be to a case that makes progress
toward a base case.

3. Design rule. Assume that all the recursive
calls work.

4. Compound interest rule. Never duplicate work
by solving the same instance of a problem in
separate recursive calls.

Towers of Hanoi

• Three pegs and a set of disks
• Goal: move all disks from peg 1 to peg 3
• Rules:

– move 1 disk at a time
– a larger disk cannot be placed on top of a

smaller disk
– all disks must be on some peg except the

disk in-transit

