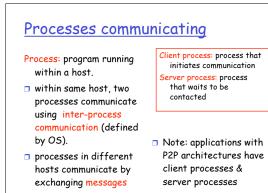
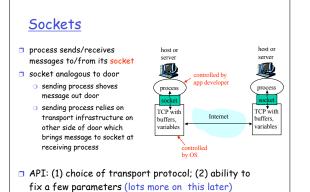


2: Application Layer 2

Application architectures Creating a network app Write programs that Client-server run on different end systems and Peer-to-peer (P2P) communicate over a network. Hybrid of client-server and P2P o e.g., Web: Web server software communicates with browser software No software written for devices in network core • Network core devices do not function at app layer • This design allows for rapid app development 2: Application Layer 4 2: Application Layer 3

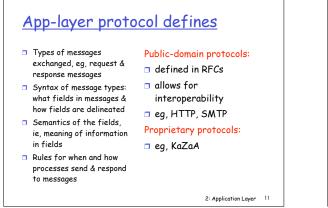

Hybrid of client-server and P2P

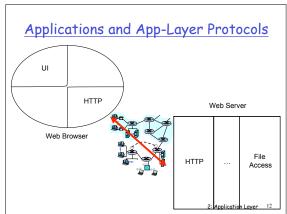
Napster


- File transfer P2P
- o File search centralized:
 - Peers register content at central server
 - $\cdot\,$ Peers query same central server to locate content

Instant messaging

- Chatting between two users is P2P
- Presence detection/location centralized:
 - $\boldsymbol{\cdot}$ User registers its IP address with central server when it comes online
 - User contacts central server to find IP addresses of buddies 2: Application Layer




2: Application Layer 8

2: Application Layer 9

Port Numbers Web Server Mail Server Port = 80 Port = 25 TCP IP = 138.110.1.1 2: Application Layer 10

What transport service does an app need?

Data loss

- some apps (e.g., audio) can tolerate some loss
- other apps (e.g., file transfer, telnet) require 100% reliable data transfer

Timing

 some apps (e.g., Internet telephony, interactive games) require low delay to be "effective"

Bandwidth

- some apps (e.g., multimedia) require minimum amount of bandwidth to be "effective"
- other apps ("elastic apps") make use of whatever bandwidth they get

2: Application Layer 13

Transport service requirements of common apps Application Data loss Bandwidth Time Sensitive file transfer no loss no elastic e-mail no loss elastic no Web documents no loss elastic no audio: 5kbps-1Mbps yes, 100's msec real-time audio/video loss-tolerant video:10kbps-5Mbps stored audio/video loss-tolerant interactive games loss-tolerant instant messaging no loss same as above few kbps up yes, few secs yes, 100's msec elastic ves and no 2: Application Layer 14

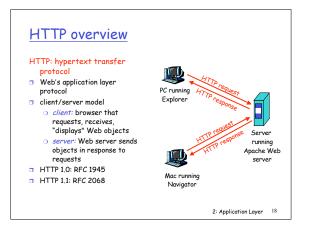
Internet transport protocols services

TCP service:

- connection-oriented: setup required between client and server processes
- reliable transport between sending and receiving process
- flow control: sender won't overwhelm receiver
- congestion control: throttle sender when network overloaded
- does not provide: timing, minimum bandwidth guarantees

UDP service: unreliable data transfer

- between sending and receiving process
- does not provide: connection setup, reliability, flow control,
 - congestion control, timing, or bandwidth guarantee
- <u>Q:</u> why bother? Why is there a UDP?

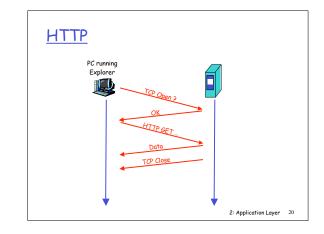

2: Application Layer 15

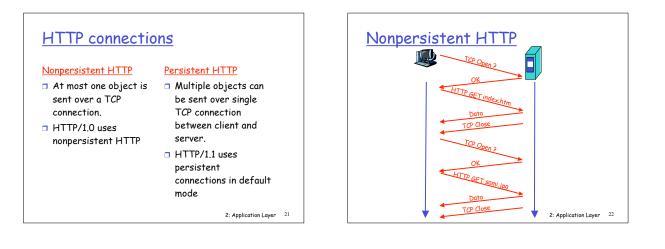
Application	Application layer protocol	Underlying transport protoco	I
e-mail	SMTP [RFC 2821]	TCP	
remote terminal access	Telnet [RFC 854]	TCP	
Web	HTTP [RFC 2616]	TCP	
file transfer	FTP [RFC 959]	TCP	
streaming multimedia	proprietary	TCP or UDP	
	(e.g. RealNetworks)		
Internet telephony	proprietary (e.g., Dialpad)	typically UDP	
		2: Application Layer	

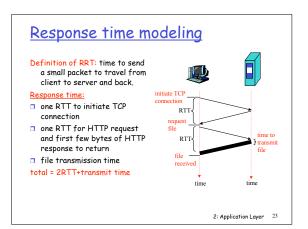
Internet apps: application, transport protocols

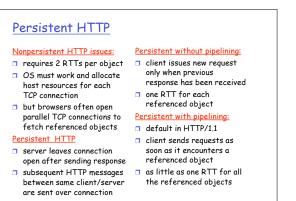
Web and HTTP First some jargon Web page consists of objects Object can be HTML file, JPEG image, Java applet, audio file,... Web page consists of base HTML-file which includes several referenced objects Each object is addressable by a URL Example URL: www.someschool.edu/someDept/pic.gif host name

2: Application Layer 17

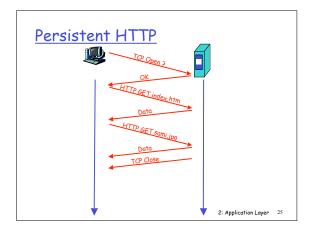

HTTP overview (continued)

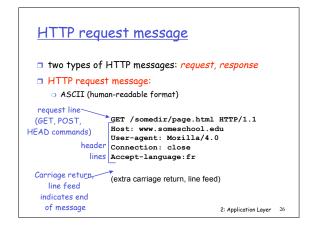

Uses TCP:

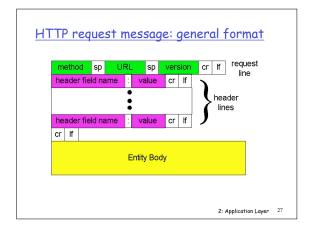

- client initiates TCP connection (creates socket) to server, port 80
- server accepts TCP connection from client
 HTTP messages (application-
- layer protocol messages) exchanged between browser (HTTP client) and Web server (HTTP server) TCP connection closed
- _____

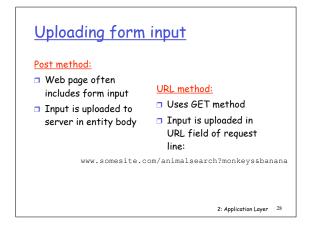

HTTP is "stateless"

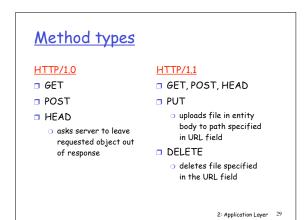
- server maintains no information about past client requests
- Protocols that maintain "state" are complex!
- past history (state) must be maintained
 if server/client crashes, their views of "state" may be
 - inconsistent, must be reconciled
 - 2: Application Layer 19

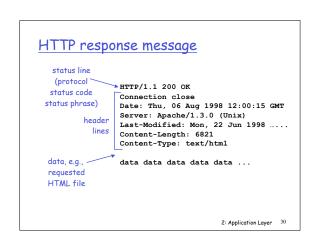


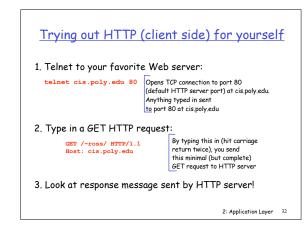







2: Application Layer 24




HTTP response status codes

In first line in server->client response message.

A few sample codes:

200 OK

- o request succeeded, requested object later in this message
- 301 Moved Permanently • requested object moved, new location specified later in
- this message (Location:) 400 Bad Request
- request message not understood by server
- 404 Not Found
- requested document not found on this server
- 505 HTTP Version Not Supported 2: Application Layer 31

server

server

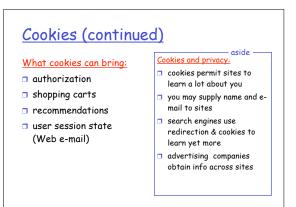
creates ID

1678 for user

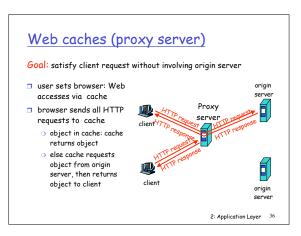
cookie-

specific

action

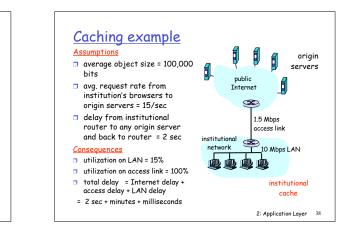

cookie-

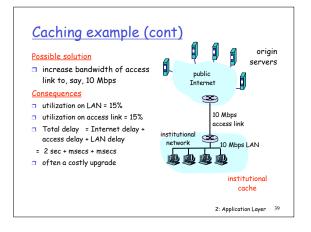
spectific

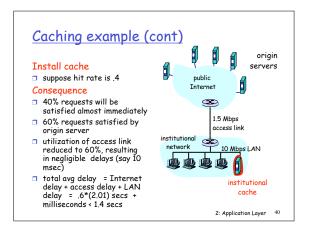

action

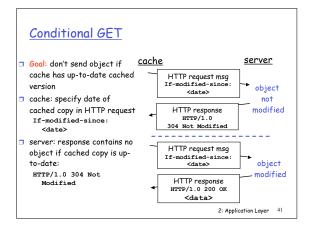
2: Application Layer 34

User-server state: cookies Cookies: keeping "state" (cont.) <u>client</u> Many major Web sites use Example: cookies usual http request msg Cookie file Susan access Internet Four components: usual http response + always from same PC ebay: 8734 1) cookie header line in the Set-cookie: • She visits a specific e-1678 HTTP response message commerce site for Cookie file usual http request msg 2) cookie header line in first time nazon: 1678 cookie: 1678 HTTP request message ebay: 8734 O When initial HTTP usual http response msg 3) cookie file kept on user's requests arrives at one week later: host and managed by site, site creates a user's browse usual http request msg Cookie file unique ID and creates 4) back-end database at cookie: 1678 on: 1678 Web site an entry in backend ebay: 8734 usual http response msg database for ID 2: Application Layer 33


More about Web caching


- Cache acts as both client and server
- Typically cache is installed by ISP (university, company, residential ISP)


Why Web caching?


- Reduce response time for client request.
- Reduce traffic on an institution's access link.
- Internet dense with caches enables "poor" content providers to effectively deliver content (but so does P2P file sharing)

2: Application Layer 37

