
1

2: Application Layer 1

Application Layer Overview and
Web/HTTP

2: Application Layer 2

Some network apps

❒ E-mail
❒ Web
❒ Instant messaging
❒ Remote login
❒ P2P file sharing
❒ Multi-user network

games
❒ Streaming stored

video clips

❒ Internet telephone
❒ Real-time video

conference
❒ Massive parallel

computing

2: Application Layer 3

Creating a network app

Write programs that
❍ run on different end systems

and
❍ communicate over a network.
❍ e.g., Web: Web server

software communicates with
browser software

No software written for
devices in network core
❍ Network core devices do not

function at app layer
❍ This design allows for rapid

app development

application
transport
network
data link
physical

applicatin
transport
network
data link
physical

transport
network
data link
physical

2: Application Layer 4

Application architectures

❒ Client-server
❒ Peer-to-peer (P2P)
❒ Hybrid of client-server and P2P

2: Application Layer 5

Client-server archicture
server:

❍ always-on host
❍ permanent IP address
❍ server farms for scaling

clients:
❍ communicate with server
❍ may be intermittently

connected
❍ may have dynamic IP

addresses
❍ do not communicate

directly with each other

Examples?
2: Application Layer 6

Pure P2P architecture

❒ no always on server
❒ arbitrary end systems

directly communicate
❒ peers are intermittently

connected and change IP
addresses

❒ example: Gnutella

Highly scalable
But difficult to manage

2

2: Application Layer 7

Hybrid of client-server and P2P

Napster
❍ File transfer P2P
❍ File search centralized:

• Peers register content at central server
• Peers query same central server to locate content

Instant messaging
❍ Chatting between two users is P2P
❍ Presence detection/location centralized:

• User registers its IP address with central server
when it comes online

• User contacts central server to find IP addresses of
buddies 2: Application Layer 8

Processes communicating

Process: program running
within a host.

❒ within same host, two
processes communicate
using inter-process
communication (defined
by OS).

❒ processes in different
hosts communicate by
exchanging messages

Client process: process that
initiates communication

Server process: process
that waits to be
contacted

❒ Note: applications with
P2P architectures have
client processes &
server processes

2: Application Layer 9

Sockets
❒ process sends/receives

messages to/from its socket
❒ socket analogous to door

❍ sending process shoves
message out door

❍ sending process relies on
transport infrastructure on
other side of door which
brings message to socket at
receiving process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

❒ API: (1) choice of transport protocol; (2) ability to
fix a few parameters (lots more on this later)

2: Application Layer 10

Port Numbers

TCP

Web Server Mail Server

IP = 138.110.1.1

Port = 25Port = 80

2: Application Layer 11

App-layer protocol defines

❒ Types of messages
exchanged, eg, request &
response messages

❒ Syntax of message types:
what fields in messages &
how fields are delineated

❒ Semantics of the fields,
ie, meaning of information
in fields

❒ Rules for when and how
processes send & respond
to messages

Public-domain protocols:
❒ defined in RFCs
❒ allows for

interoperability
❒ eg, HTTP, SMTP
Proprietary protocols:
❒ eg, KaZaA

2: Application Layer 12

Applications and App-Layer Protocols

Web Browser

Web ServerHTTP

UI

HTTP …
File

Access

3

2: Application Layer 13

What transport service does an app need?
Data loss
❒ some apps (e.g., audio)

can tolerate some loss
❒ other apps (e.g., file

transfer, telnet) require
100% reliable data
transfer

Timing
❒ some apps (e.g.,

Internet telephony,
interactive games)
require low delay to
be “effective”

Bandwidth
❒ some apps (e.g.,

multimedia) require
minimum amount of
bandwidth to be
“effective”

❒ other apps (“elastic
apps”) make use of
whatever bandwidth
they get

2: Application Layer 14

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

2: Application Layer 15

Internet transport protocols services

TCP service:
❒ connection-oriented: setup

required between client and
server processes

❒ reliable transport between
sending and receiving process

❒ flow control: sender won’t
overwhelm receiver

❒ congestion control: throttle
sender when network
overloaded

❒ does not provide: timing,
minimum bandwidth
guarantees

UDP service:
❒ unreliable data transfer

between sending and
receiving process

❒ does not provide:
connection setup,
reliability, flow control,
congestion control,
timing, or bandwidth
guarantee

Q: why bother? Why is
there a UDP?

2: Application Layer 16

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
proprietary
(e.g. RealNetworks)
proprietary
(e.g., Dialpad)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

2: Application Layer 17

Web and HTTP
First some jargon
❒ Web page consists of objects
❒ Object can be HTML file, JPEG image, Java

applet, audio file,…
❒ Web page consists of base HTML-file which

includes several referenced objects
❒ Each object is addressable by a URL
❒ Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

2: Application Layer 18

HTTP overview

HTTP: hypertext transfer
protocol

❒ Web’s application layer
protocol

❒ client/server model
❍ client: browser that

requests, receives,
“displays” Web objects

❍ server: Web server sends
objects in response to
requests

❒ HTTP 1.0: RFC 1945
❒ HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

4

2: Application Layer 19

HTTP overview (continued)

Uses TCP:
❒ client initiates TCP

connection (creates socket)
to server, port 80

❒ server accepts TCP
connection from client

❒ HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

❒ TCP connection closed

HTTP is “stateless”
❒ server maintains no

information about
past client requests

Protocols that maintain “state”
are complex!

❒ past history (state) must be
maintained

❒ if server/client crashes,
their views of “state” may be
inconsistent, must be
reconciled

aside

2: Application Layer 20

HTTP
PC running
Explorer

TCP Open ?

OK

HTTP GET …

Data

TCP Close

2: Application Layer 21

HTTP connections

Nonpersistent HTTP
❒ At most one object is

sent over a TCP
connection.

❒ HTTP/1.0 uses
nonpersistent HTTP

Persistent HTTP
❒ Multiple objects can

be sent over single
TCP connection
between client and
server.

❒ HTTP/1.1 uses
persistent
connections in default
mode

2: Application Layer 22

Nonpersistent HTTP
TCP Open ?

OK
HTTP GET index.htm

Data

TCP Close

TCP Open ?

OK
HTTP GET sami.jpg

Data

TCP Close

2: Application Layer 23

Response time modeling

Definition of RRT: time to send
a small packet to travel from
client to server and back.

Response time:
❒ one RTT to initiate TCP

connection
❒ one RTT for HTTP request

and first few bytes of HTTP
response to return

❒ file transmission time
total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

2: Application Layer 24

Persistent HTTP
Nonpersistent HTTP issues:
❒ requires 2 RTTs per object
❒ OS must work and allocate

host resources for each
TCP connection

❒ but browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP
❒ server leaves connection

open after sending response
❒ subsequent HTTP messages

between same client/server
are sent over connection

Persistent without pipelining:
❒ client issues new request

only when previous
response has been received

❒ one RTT for each
referenced object

Persistent with pipelining:
❒ default in HTTP/1.1
❒ client sends requests as

soon as it encounters a
referenced object

❒ as little as one RTT for all
the referenced objects

5

2: Application Layer 25

Persistent HTTP
TCP Open ?

OK
HTTP GET index.htm

Data

HTTP GET sami.jpg

Data

TCP Close

2: Application Layer 26

HTTP request message

❒ two types of HTTP messages: request, response
❒ HTTP request message:

❍ ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

2: Application Layer 27

HTTP request message: general format

2: Application Layer 28

Uploading form input

Post method:
❒ Web page often

includes form input
❒ Input is uploaded to

server in entity body

URL method:
❒ Uses GET method
❒ Input is uploaded in

URL field of request
line:

www.somesite.com/animalsearch?monkeys&banana

2: Application Layer 29

Method types

HTTP/1.0
❒ GET
❒ POST
❒ HEAD

❍ asks server to leave
requested object out
of response

HTTP/1.1
❒ GET, POST, HEAD
❒ PUT

❍ uploads file in entity
body to path specified
in URL field

❒ DELETE
❍ deletes file specified

in the URL field

2: Application Layer 30

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

6

2: Application Layer 31

HTTP response status codes

200 OK
❍ request succeeded, requested object later in this message

301 Moved Permanently
❍ requested object moved, new location specified later in

this message (Location:)
400 Bad Request

❍ request message not understood by server
404 Not Found

❍ requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

2: Application Layer 32

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:
GET /~ross/ HTTP/1.1
Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

2: Application Layer 33

User-server state: cookies

Many major Web sites use
cookies

Four components:
1) cookie header line in the

HTTP response message
2) cookie header line in

HTTP request message
3) cookie file kept on user’s

host and managed by
user’s browser

4) back-end database at
Web site

Example:
❍ Susan access Internet

always from same PC
❍ She visits a specific e-

commerce site for
first time

❍ When initial HTTP
requests arrives at
site, site creates a
unique ID and creates
an entry in backend
database for ID

2: Application Layer 34

Cookies: keeping “state” (cont.)

client server
usual http request msg
usual http response +
Set-cookie:

1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific

action

server
creates ID

1678 for user

entry in backend

database

access

acc
ess

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file
amazon: 1678
ebay: 8734

one week later:

2: Application Layer 35

Cookies (continued)
What cookies can bring:
❒ authorization
❒ shopping carts
❒ recommendations
❒ user session state

(Web e-mail)

Cookies and privacy:
❒ cookies permit sites to

learn a lot about you
❒ you may supply name and e-

mail to sites
❒ search engines use

redirection & cookies to
learn yet more

❒ advertising companies
obtain info across sites

aside

2: Application Layer 36

Web caches (proxy server)

❒ user sets browser: Web
accesses via cache

❒ browser sends all HTTP
requests to cache
❍ object in cache: cache

returns object
❍ else cache requests

object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

7

2: Application Layer 37

More about Web caching

❒ Cache acts as both client
and server

❒ Typically cache is installed
by ISP (university,
company, residential ISP)

Why Web caching?
❒ Reduce response time for

client request.
❒ Reduce traffic on an

institution’s access link.
❒ Internet dense with

caches enables “poor”
content providers to
effectively deliver content
(but so does P2P file
sharing)

2: Application Layer 38

Caching example
Assumptions
❒ average object size = 100,000

bits
❒ avg. request rate from

institution’s browsers to
origin servers = 15/sec

❒ delay from institutional
router to any origin server
and back to router = 2 sec

Consequences
❒ utilization on LAN = 15%
❒ utilization on access link = 100%
❒ total delay = Internet delay +

access delay + LAN delay
 = 2 sec + minutes + milliseconds

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

2: Application Layer 39

Caching example (cont)
Possible solution
❒ increase bandwidth of access

link to, say, 10 Mbps
Consequences
❒ utilization on LAN = 15%
❒ utilization on access link = 15%
❒ Total delay = Internet delay +

access delay + LAN delay
 = 2 sec + msecs + msecs
❒ often a costly upgrade

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

institutional
cache

2: Application Layer 40

Caching example (cont)

Install cache
❒ suppose hit rate is .4
Consequence
❒ 40% requests will be

satisfied almost immediately
❒ 60% requests satisfied by

origin server
❒ utilization of access link

reduced to 60%, resulting
in negligible delays (say 10
msec)

❒ total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs +
milliseconds < 1.4 secs

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

2: Application Layer 41

Conditional GET

❒ Goal: don’t send object if
cache has up-to-date cached
version

❒ cache: specify date of
cached copy in HTTP request
If-modified-since:

<date>

❒ server: response contains no
object if cached copy is up-
to-date:
HTTP/1.0 304 Not

Modified

cache server
HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

