5: DataLink Layer

Mac Addressing, Ethernet, and Interconnections

LAN Addresses and ARP

- Each adapter on LAN has unique LAN address

LAN Address (more)

- MAC address allocation administered by IEEE
- Manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy:
 - (a) MAC address: like Social Security Number
 - (b) IP address: like postal address
- MAC flat address ➔ portability
 - can move LAN card from one LAN to another
- IP hierarchical address NOT portable
 - depends on IP subnet to which node is attached

ARP: Address Resolution Protocol

- Each IP node (Host, Router) on LAN has ARP table
- ARP Table: IP/MAC address mappings for some LAN nodes
 - IP address: MAC address: TTL (Time To Live)
 - TTL: time after which address mapping will be forgotten (typically 20 min)

ARP protocol: Same LAN (network)

- A wants to send datagram to B, and B’s MAC address not in A’s ARP table.
- A broadcasts ARP query packet, containing B’s IP address
 - Dest MAC address = FF-FF-FF-FF-FF-FF
 - All machines on LAN receive ARP query
- B receives ARP packet, replies to A with its (B’s) MAC address
 - frame sent to A’s MAC address (unicast)
- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play": nodes create their ARP tables without intervention from net administrator
Routing to another LAN

Walkthrough: send datagram from A to B via R

Assume A knows B's IP address

- Two ARP tables in router R, one for each IP network (LAN)
- In routing table at source Host, find router 111.111.111.110
- In ARP table at source, find MAC address E6-E9-00-17-BB-4B, etc

A creates datagram with source A, destination B
A uses ARP to get R's MAC address for 111.111.111.110
A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram
A's adapter sends frame
R's adapter receives frame
R removes IP datagram from Ethernet frame, sees its destined to B
R uses ARP to get B's MAC address
R creates frame containing A-to-B IP datagram sends to B

Ethernet

dominant wired LAN technology:
- cheap $20 for 100Mbps!
- first widely used LAN technology
- Simpler, cheaper than token LANs and ATM
- Kept up with speed race: 10 Mbps - 10 Gbps

Star topology

Bus topology popular through mid 90s
Now star topology prevails
Connection choices: hub or switch (more later)

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

- Preamble
- Dest. Address
- Source Address
- Len
- Type

Preamble:
- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

- Address: 6 bytes
 - if adapter receives frame with matching destination address, or with broadcast address (eg ARP packet), it passes data in frame to net-layer protocol
 - otherwise, adapter discards frame

- Type: indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)

- CRC: checked at receiver, if error is detected,
Manchester encoding

- Used in 10BaseT
- Each bit has a transition
- Allows clocks in sending and receiving nodes to synchronize to each other
 - no need for a centralized, global clock among nodes!
- Hey, this is physical-layer stuff!

Unreliable, connectionless service

- Connectionless: No handshaking between sending and receiving adapter.
- Unreliable: Receiving adapter doesn’t send acks or nacks to sending adapter
 - Stream of datagrams passed to network layer can have gaps
 - Gaps will be filled if app is using TCP
 - Otherwise, app will see the gaps

Ethernet uses CSMA/CD

- No slots
- Adapter doesn’t transmit if it senses that some other adapter is transmitting, that is, carrier sense
- Transmitting adapter aborts when it senses that another adapter is transmitting, that is, collision detection
- Before attempting a retransmission, adapter waits a random time, that is, random access

Ethernet’s CSMA/CD (more)

Jam Signal: Make sure all other transmitters are aware of collision; 48 bits
Bit time: 1 microsec for 10 Mbps Ethernet; for K=1023, wait time is about 50 msec

Exponential Backoff:
- Goal: Adapt retransmission attempts to estimated current load
- Heavy load: Random wait will be longer
- First collision: Choose K from (0,1); delay is K·512 bit transmission times
- After second collision: Choose K from (0,1,2,3)
- After ten collisions, choose K from (0,1,2,3,4,…,1023)

See/interact with Java applet on AWL Web site: highly recommended!

Ethernet CSMA/CD algorithm

1. Adapter receives datagram from net layer & creates frame
2. If adapter senses channel idle, it starts to transmit frame. If it senses channel busy, waits until channel idle and then transmits
3. If adapter transmits entire frame without detecting another transmission, the adapter is done with frame!
4. If adapter detects another transmission while transmitting, aborts and sends jam signal
5. After aborting, adapter enters exponential backoff: After the mth collision, adapter chooses a K at random from (0,1,2,…,2m−1). Adapter waits K·512 bit times and returns to Step 2

10BaseT and 100BaseT

- 10/100 Mbps rate; latter called “fast ethernet”
- T stands for Twisted Pair
- Nodes connect to a hub: “star topology”; 100 m max distance between nodes and hub
Hubs

Hubs are essentially physical-layer repeaters:
- Bits coming from one link go out all other links
- At the same rate
- No frame buffering
- No CSMA/CD at hub: adapters detect collisions
- Provides net management functionality

Gbit Ethernet

- Uses standard Ethernet frame format
- Allows for point-to-point links and shared broadcast channels
- In shared mode, CSMA/CD is used; short distances between nodes required for efficiency
- Uses hubs, called here “Buffered Distributors”
- Full-Duplex at 1 Gbps for point-to-point links
- 10 Gbps now!

Interconnecting with hubs

- Backbone hub interconnects LAN segments
- Extends max distance between nodes
- But individual segment collision domains become one large collision domain
- Can’t interconnect 10BaseT & 100BaseT

Switch

- Link layer device
 - Stores and forwards Ethernet frames
 - Examines frame header and selectively forwards frame based on MAC dest address
 - When frame is to be forwarded on segment, uses CSMA/CD to access segment
 - Transparent
 - Hosts are unaware of presence of switches
 - Plug-and-play, self-learning
 - Switches do not need to be configured

Forwarding

- How do determine onto which LAN segment to forward frame?
- Looks like a routing problem...

Self learning

- A switch has a switch table
- Entry in switch table:
 - (MAC Address, Interface, Time Stamp)
 - Stale entries in table dropped (TTL can be 60 min)
- Switch learns which hosts can be reached through which interfaces
 - When frame received, switch “learns” location of sender: incoming LAN segment
 - Records sender/location pair in switch table
Filtering/Forwarding

When switch receives a frame:

index switch table using MAC dest address
if entry found for destination
then
 if dest on segment from which frame arrived
 then drop the frame
 else forward the frame on interface indicated
else flood

forward on all but the interface on which the frame arrived

Switch example

Suppose C sends frame to D

Switch receives frame from from C
 notes in bridge table that C is on interface 1
 because D is not in table, switch forwards frame into
 interfaces 2 and 3
 frame received by D

Switch example

Suppose D replies back with frame to C.

Switch receives frame from from D
 notes in bridge table that D is on interface 2
 because C is in table, switch forwards frame only to
 interface 1
 frame received by C

Switch: traffic isolation

- switch installation breaks subnet into LAN segments
- switch filters packets:
 - same-LAN-segment frames not usually forwarded onto other LAN segments
 - segments become separate collision domains

Switches: dedicated access

- Switch with many interfaces
- Hosts have direct connection to switch
- No collisions; full duplex

Switching: A-to-A' and B-to-B' simultaneously, no collisions

More on Switches

- cut-through switching: frame forwarded from input to output port without first collecting entire frame
- slight reduction in latency
- combinations of shared/dedicated, 10/100/1000 Mbps interfaces
Institutional network

Switches vs. Routers
- both store-and-forward devices
 - routers: network layer devices (examine network layer headers)
 - switches: link layer devices
- routers maintain routing tables, implement routing algorithms
- switches maintain switch tables, implement filtering, learning algorithms

Switches vs. Routers

<table>
<thead>
<tr>
<th></th>
<th>Hubs</th>
<th>Routers</th>
<th>Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic isolation</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Plug & Play</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Optimal Routing</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Cut Through</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>