
1

Transport Layer 3-1

TCP

Transport Layer 3-2

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

❒ full duplex data:
❍ bi-directional data flow in

same connection
❍ MSS: maximum segment

size
❒ connection-oriented:

❍ handshaking (exchange of
control msgs) init’s sender,
receiver state before data
exchange

❒ flow controlled:
❍ sender will not overwhelm

receiver

❒ point-to-point:
❍ one sender, one receiver

❒ reliable, in-order byte
steam:
❍ no “message boundaries”

❒ pipelined:
❍ TCP congestion and flow

control set window size

❒ send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data

application

reads data

Transport Layer 3-3

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-4

TCP seq. #’s and ACKs
Seq. #’s:

❍ byte stream “number”
of first byte in
segment’s data

ACKs:
❍ seq # of next byte

expected from other
side

❍ cumulative ACK
❍ piggybacking

Q: how receiver handles out-of-
order segments
❍ A: TCP spec doesn’t

say, - up to implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

Transport Layer 3-5

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

❒ longer than RTT
❍ but RTT varies

❒ too short: premature
timeout
❍ unnecessary

retransmissions
❒ too long: slow reaction

to segment loss

Q: how to estimate RTT?
❒ SampleRTT: measured time

from segment transmission until
ACK receipt
❍ ignore retransmissions

❒ SampleRTT will vary, want
estimated RTT “smoother”
❍ average several recent

measurements, not just
current SampleRTT

Transport Layer 3-6

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T

(
m

il
li
s
e

c
o

n
d

s
)

SampleRTT Estimated RTT

2

Transport Layer 3-7

TCP reliable data transfer

❒ TCP creates rdt
service on top of IP’s
unreliable service

❒ Pipelined segments
❒ Cumulative acks
❒ TCP uses single

retransmission timer

❒ Retransmissions are
triggered by:
❍ timeout events
❍ duplicate acks

❒ Initially consider
simplified TCP sender:
❍ ignore duplicate acks
❍ ignore flow control,

congestion control

Transport Layer 3-8

TCP sender events:
data rcvd from app:
❒ Create segment with

seq #
❒ seq # is byte-stream

number of first data
byte in segment

❒ start timer if not
already running (think
of timer as for oldest
unacked segment)

❒ expiration interval:
TimeOutInterval

timeout:
❒ retransmit segment

that caused timeout
❒ restart timer
 Ack rcvd:
❒ If acknowledges

previously unacked
segments
❍ update what is known

to be acked
❍ start timer if there

are outstanding
segments

Transport Layer 3-9

TCP
sender
(simplified)

 NextSeqNum = InitialSeqNum
 SendBase = InitialSeqNum

 loop (forever) {
 switch(event)

 event: data received from application above
 create TCP segment with sequence number NextSeqNum
 if (timer currently not running)
 start timer
 pass segment to IP
 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout
 retransmit not-yet-acknowledged segment with
 smallest sequence number
 start timer

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }

 } /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Transport Layer 3-10

TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
eq

=9
2

ti
m

eo
ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

S
eq

=9
2

ti
m

eo
ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Transport Layer 3-11

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

Transport Layer 3-12

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment startsat lower end of gap

3

Transport Layer 3-13

Fast Retransmit

❒ Time-out period
often relatively long:
❍ long delay before

resending lost packet

❒ Detect lost segments
via duplicate ACKs.
❍ Sender often sends

many segments back-to-
back

❍ If segment is lost,
there will likely be
many duplicate ACKs.

❒ If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
❍ fast retransmit: resend

segment before timer
expires

Transport Layer 3-14

TCP Flow Control

❒ receive side of TCP
connection has a
receive buffer:

❒ speed-matching
service: matching the
send rate to the
receiving app’s drain
rate❒ app process may be

slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
 too fast

flow control

Transport Layer 3-15

TCP Flow control: how it works

(Suppose TCP receiver
discards out-of-order
segments)

❒ spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

❒ Rcvr advertises spare
room by including value
of RcvWindow in
segments

❒ Sender limits unACKed
data to RcvWindow
❍ guarantees receive

buffer doesn’t overflow

Transport Layer 3-16

TCP Connection Management

Recall: TCP sender, receiver establish “connection”
before exchanging data segments

❒ initialize TCP variables:
❍ seq. #s
❍ buffers, flow control info (e.g. RcvWindow)

❒ client: connection initiator
 Socket clientSocket = new Socket("hostname","port

number");

❒ server: contacted by client
 Socket connectionSocket = welcomeSocket.accept();

Transport Layer 3-17

TCP Connection Management

Three way handshake:

Step 1: client host sends TCP SYN segment to server
❍ specifies initial seq #
❍ no data

Step 2: server host receives SYN, replies with SYNACK
segment

❍ server allocates buffers
❍ specifies server initial seq. #

Step 3: client receives SYNACK, replies with ACK segment,
which may contain data

Transport Layer 3-18

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

4

Transport Layer 3-19

TCP Connection Management (cont.)

Step 3: client receives
FIN, replies with ACK.

❍ Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed

