
1

Transport Layer 3-1

Transport Overview and UDP

Transport Layer 3-2

Goals

❒ Understand transport services
❍ Multiplexing and Demultiplexing
❍ Reliable data transfer
❍ Flow control
❍ Congestion control

❒ TCP and UDP

Transport Layer 3-3

Transport services and protocols
❒ provide logical communication

between app processes
running on different hosts

❒ transport protocols run in
end systems
❍ send side: breaks app

messages into segments,
passes to network layer

❍ rcv side: reassembles
segments into messages,
passes to app layer

❒ more than one transport
protocol available to apps
❍ Internet: TCP and UDP

applicatio
n

transport
network
data li nk
physical

applicatio
n

transport
network
data li nk
physical

network
data li nk
physical

network
data li nk
physical

network
data li nk
physical

network
data li nk
physicalnetwork

data li nk
physical

logical end-end transport

Transport Layer 3-4

Transport vs. network layer

❒ network layer: logical
communication
between hosts

❒ transport layer:
logical communication
between processes
❍ relies on, enhances,

network layer services

Household analogy:
12 kids sending letters to 12

kids
❒ processes = kids
❒ app messages = letters in

envelopes
❒ hosts = houses
❒ transport protocol = Ann

and Bill
❒ network-layer protocol =

postal service

Transport Layer 3-5

Internet transport-layer protocols

❒ reliable, in-order
delivery (TCP)
❍ congestion control
❍ flow control
❍ connection setup

❒ unreliable, unordered
delivery: UDP
❍ no-frills extension of

“best-effort” IP

❒ services not available:
❍ delay guarantees
❍ bandwidth guarantees

applicatio
n

transport
network
data li nk
physical

applicatio
n

transport
network
data li nk
physical

network
data li nk
physical

network
data li nk
physical

network
data li nk
physical

network
data li nk
physicalnetwork

data li nk
physical

logical end-end transport

Transport Layer 3-6

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

2

Transport Layer 3-7

How demultiplexing works
❒ host receives IP datagrams

❍ each datagram has source
IP address, destination IP
address

❍ each datagram carries 1
transport-layer segment

❍ each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

❒ host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Transport Layer 3-8

Connectionless demultiplexing

❒ Create sockets with port
numbers:

DatagramSocket mySocket1 = new
DatagramSocket(99111);

DatagramSocket mySocket2 = new
DatagramSocket(99222);

❒ UDP socket identified by
two-tuple:

(dest IP address, dest port number)

❒ When host receives
UDP segment:
❍ checks destination port

number in segment
❍ directs UDP segment to

socket with that port
number

❒ IP datagrams with
different source IP
addresses and/or
source port numbers
directed to same socket

Transport Layer 3-9

Connectionless demux (cont)
DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
 IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

Transport Layer 3-10

Connection-oriented demux

❒ TCP socket identified
by 4-tuple:
❍ source IP address
❍ source port number
❍ dest IP address
❍ dest port number

❒ recv host uses all four
values to direct
segment to appropriate
socket

❒ Server host may
support many
simultaneous TCP
sockets:
❍ each socket identified by

its own 4-tuple

❒ Web servers have
different sockets for
each connecting client
❍ non-persistent HTTP will

have different socket for
each request

Transport Layer 3-11

Connection-oriented demux
(cont)

Client
IP:B

P1

client
 IP: A

P1P2P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Transport Layer 3-12

Connection-oriented demux:
Threaded Web Server

Client
IP:B

P1

client
 IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

3

Transport Layer 3-13

UDP: User Datagram Protocol [RFC 768]

❒ “no frills,” “bare bones”
Internet transport protocol

❒ “best effort” service, UDP
segments may be:
❍ lost
❍ delivered out of order to

app
❒ connectionless:

❍ no handshaking between
UDP sender, receiver

❍ each UDP segment
handled independently of
others

Transport Layer 3-14

UDP: more
❒ often used for streaming

multimedia apps
❍ loss tolerant
❍ rate sensitive

❒ other UDP uses
❍ DNS
❍ SNMP

❒ reliable transfer over
UDP: add reliability at
application layer
❍ application-specific

error recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Transport Layer 3-15

UDP checksum

Sender:
❒ treat segment contents

as sequence of 16-bit
integers

❒ checksum: addition (1’s
complement sum) of
segment contents

❒ sender puts checksum
value into UDP checksum
field

Receiver:
❒ compute checksum of

received segment
❒ check if computed checksum

equals checksum field value:
❍ NO - error detected
❍ YES - no error detected.

But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in
transmitted segment

Transport Layer 3-16

Internet Checksum Example
❒ Note

❍ When adding numbers, a carryout from the
most significant bit needs to be added to the
result

❒ Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

