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Abstract

To support pervasive applications mobile computing devices often perform background tasks,

such as prefetching RSS newsfeeds, that improve the user’s experience but require no interactiv-

ity. In an effort to conserve energy, background tasks are typically scheduled infrequently and

only when a device is already in-use. The underlying assumption is that the user will need every

last joule in the battery. However, the results of our four-month user study suggest that mobile

devices often begin to recharge with 30% or more of their energy remaining. The goal of this

work is to utilize that excess energy to increase the frequency of background tasks. We present

an online algorithm that adaptively predicts how much energy a device will have remaining at

recharge and schedules self-initiated wake-up to utilize the energy for background tasks. We use

the data collected by our user study to evaluate our algorithm. Our results indicate that that

we can perform tasks as frequently as every 12 minutes while remaining 95% confident that the

user will recharge her device before the battery dies.

1 Introduction

A fundamental goal of pervasive computing is invisibility : masking variations in context by proac-

tively adapting the state of a user’s devices to current conditions. To achieve this goal, devices

perform background tasks that improve the user’s experience but require no interactivity. For exam-

ple, operations such as prefetching, hoarding, replication, and synchronization promise to smooth

variations in reliability, connectivity, and availability by transparently transferring data that may

become useful in the future.

Although background tasks are intended to improve the user’s experience, they compete with

interactive tasks for device resources such as bandwidth, CPU cycles, and energy. In many cases,
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partitioning resources is straightforward. For example, if a network link is idle it can be used for

a background task with no further consequences. However, sharing energy on battery-powered

mobile devices is a zero-sum game; energy allocated to a background task is energy that cannot

be spent to perform an interactive task. If background tasks consume too much energy, the device

may run out of battery before the user recharges and the user-perceived lifetime of the device will

be affected.

Fortunately, background tasks such as web-prefetching and file replication are speculative. Thus,

their frequency and fidelity can be altered to minimize their impact on user-perceived lifetime.

However, most current strategies for performing background tasks are excessively conservative,

performing tasks only when the user is active, hence consuming minimal additional energy. Any

energy remaining in the device when it is recharged is effectively wasted and, in hindsight, could

have been used to benefit the user.

Though wasted energy can be used to increase the frequency and fidelity of background tasks,

determining how much energy a device will have remaining at recharge is a challenge. Energy usage

varies significantly from device to device, from user to user, and also temporally. One user may

fully charge her music player, take it on a bike ride, and drain the battery completely in one use,

while another charges her digital camera, uses it intermittently over a weekend, and only drains it

partway. Though in the first scenario a conservative energy management strategy is warranted, in

the second scenario the device could spend the remainder of its battery transparently uploading

images to a web server or sharing them with friends. Other devices might fetch email or RSS

feeds, replicate data to backup servers, automatically adjust screen brightness, or perform virus

scans. However, the key challenge is to identify how much energy can be used for background tasks

without affecting the user-perceived lifetime of the device.

The goal of this work is to predict how much energy a device will have remaining at recharge

and use that energy to perform background tasks. Because of the significant variations in usage

patterns of devices, no single strategy is likely to work well for all users. However, a single device

is often associated with a particular user and a specific purpose. An effective strategy should be

able to learn the habits of the user and adapt energy usage based on the patterns observed.

This paper presents the design and evaluation of Llama, a system designed to adaptively manage

excess energy on mobile computers. First, we use battery traces collected from 13 laptops during a

four-month study to demonstrate that users exhibit predictable behavior and typically have energy

to spare. We then present an online algorithm that determines, based on previous battery usage,
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how much energy a device can devote to supporting background tasks, such as fetching RSS feeds,

without affecting user-perceived lifetime. Finally, we use the data collected during our user study to

evaluate how much energy our algorithm is able to use and how often it impacts the user-perceived

lifetime of the device. Our results indicate that we can perform tasks as frequently as every 12

minutes while remaining 95% confident that the user will recharge the device before the battery

dies.

2 A Mobile User Study

Our work is predicated on two hypotheses. First, mobile users often leave a substantial portion of

energy in their batteries. Second, devices exhibit predictable energy usage patterns. To validate

these hypotheses, we conducted a small-scale user study on the energy habits of laptop users. The

outcomes of this study are threefold. First, it demonstrates that users often leave 30% or more

of their battery unused, and many of the users leave 60% or more of the capacity in the battery.

Second, user behavior, including our own, can be classified into three distinct categories that closely

correspond to our perceptions of energy usage. Third, our collected data set provides us with the

foundation for a simulated evaluation of our system.

We deployed a Java-based measurement tool that periodically collects the following measure-

ments: the percentage of battery remaining, the charging status of the device, the current CPU

usage, the available disk space, a coarse measurement of available network bandwidth, and the

duration of time since the last keyboard or mouse input (i.e., idle time). It records this information

every 1 to 10 minutes, based on a user-configurable parameter, and reports data collected to a cen-

tral server. In addition, it only records measurements when the device is in an active or idle state

and does not attempt to override its power settings—it does not wake the device from suspension

in order to collect measurements.

In total, the tool was deployed on 24 laptops, both Windows and Macintosh. It was distributed

in a purely word-of-mouth manner and most of the devices belong to computer science faculty,

students, and their friends and families. Though we suspect that the distribution of the user

population is highly biased, we believe that these results demonstrate the feasibility of running

such a system on laptops and other pervasive computing devices, such as portable music players,

PDAs, mobile phones, and tablets.

Our analysis and experiments utilize data collected by 13 of the devices between February 16th
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Figure 1: This figure shows the results of using a
clustering algorithm that reveals three categories of
mobile users.
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Figure 2: This figure illustrates the cumulative dis-
tribution of the remaining battery at recharge for
three sample devices.

and June 19th, 2006—roughly a period of four months. We chose to use data from the 13 devices

that consistently reported data during this period. Some devices did not consistently report data

because the users uninstalled the software, or stopped using their laptops altogether.

In this work, we primarily consider the battery usage characteristics of the participating devices,

including the percentage of battery remaining at recharge and the charging status of the device.

We have discovered several interesting anomalies in the data collected. For example, on March 18,

2006, the battery of one device reported 11% capacity at 8:25PM and 87% at 8:29PM—several

instances of this behavior can be found in the traces. As we are unaware of any laptops that can

charge this quickly, we believe that two batteries were used on these devices. Another interesting

occurrence is that some devices consistently report 95-96% charged, even while on AC for extended

periods. We have tracked this to the fact that OS X avoids repeatedly charging the battery to full

capacity to ensure the longevity of the battery.

To classify the battery usage patterns of the participating devices we considered the two char-

acteristics that we believe are the most telling of a user’s habits: the percentage of measurements

reported while plugged in and the average battery capacity remaining when recharging began. We

used a complete linkage clustering algorithm with a threshold of 25 to categorize the 13 devices

based on these attributes [3].

Figure 1 shows the three distinct categories that emerge from our data set. Unsurprisingly,

nearly half of the devices fall into the category we refer to as desktop replacements. These devices

spend most of their time on AC power and, on average, recharge their batteries when they are very

full. The evidence suggests that desktop replacement users purchase laptops for their form-factor,
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and not for their mobility. We also identified three mobile users that often allow their batteries

to drain completely, though still record 76% of their measurements while on AC power. Though

this may seem counterintuitive, a closer look at the data reveals that these devices often report

significant drops in battery during periods when the device is not collecting data. This suggests

that the devices run on battery more than 76% of the time, but likely expend much of their energy

while suspended. Finally, the weekend warriors fall somewhere in between the other two classes.

The data also reveal that most of the weekend warriors actually act as desktop replacements much

of the time, but occasionally exhibit bursts of mobile user-like behavior.

The average percentage of battery remaining at recharge is an useful attribute for classification

of users. However, it does not provide us with a sufficiently fine-grained look at the amount of energy

that goes unused by the devices. Figure 2 shows the cumulative distribution of the percentage of

the battery remaining when a device begins to recharge. It illustrates three example devices, one

from each class. Other devices from the same class are substantially similar.

The graph shows that all three of the devices have energy to spare most of the time. For

example, the weekend warrior can spare over 50% of its battery half of the time and the desktop

replacement never uses the last 30% of its battery. Even the mobile user recharges at above 30%

roughly 30% of the time. We observe that any strategy that attempts to utilize this excess energy

must adapt to varied patterns of device usage. No one policy will work well for all devices, and no

one policy will work for any device all of the time.

3 Monitoring and Prediction

Based on the results of our user-study, we have designed a system, named Llama, to manage excess

energy on pervasive computing devices. Llama tracks how much of the battery is typically used on

a device, predicts when recharges will occur, and devotes excess energy to background applications.

Though Llama is capable of supporting many kinds of background applications, we have chosen to

focus on applications designed to run periodically for short periods of time. An application, such

as RSS newsfeed prefetching, that spends a few seconds downloading updates every few minutes

falls into this category.

There are three key features of the Llama system design. First, Llama uses a probabilistic policy,

ensuring that background applications impact the user-perceived lifetime of the device only a small

percentage of the time. Second, Llama is adaptive; it responds to short-term and long-term changes
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in user behavior. Third, Llama enables a new kind of functionality not typically used in laptops,

PDAs, and portable music players: self-initiated wake-up. Generally, once a device places itself in a

low-power state, such as suspension, hibernation, or off, it requires user intervention to start again.

However, Llama can schedule wake-sleep cycling to proactively run background tasks while the user

is not actively using the device. Note that at a hardware level this is already well-supported.

The main component of Llama is a predictor that estimates, using a measured histogram of

previous battery usage and the current battery capacity, how much energy will be left in the battery

when the device begins its next recharge cycle. The histogram is measured using the same technique

used in the user-study—if the device is awake, it periodically records the remaining charge in the

battery and tracks when a recharge begins. Using the predicted energy remaining, the predictor

schedules self-initiated wake-up to utilize the remaining energy to performing background tasks.

This process is necessarily adaptive; it recalculates the energy to devote to background tasks each

time a background task is executed. Furthermore, the predictor utilizes a tunable parameter that

specifies the confidence with which the device will not run out of battery before the next expected

recharge.

As an example of how Llama operates, suppose a user wants to assure with a confidence of

95% that her laptop battery will not run out before the next expected recharge. The algorithm

determines the current battery capacity to be 30%. It consults the histogram of recharges and

determines that 95% of the time that the battery drains below 30% the user recharges at or above

10%. The algorithm uses this to estimate that the user will use 90% of the battery. It then

conservatively allows Llama to use 10% of the remaining 30%, or 3%.

We formally define the optimization problem using the variables defined in Table 1. Eb and Ef

are the energy consumed by background and foreground tasks in between two consecutive recharges.

The algorithm tries to maximize Eb—subject to Pr[Eb + Ef > C] ≤ p. Our current system then

uses Eb, to calculate the frequency with which the device should transition into an active state to

perform a background task.

When Llama executes, it first determines if the device is plugged in or is already in-use. In

both cases, the device is already in an active state and can perform its operation as frequently

as necessary. We currently assume that the applications we support do not incur any additional

energy usage when run in the background during times that the user is actively utilizing the device.

This is consistent with applications, such as RSS prefetching, that are short and consume only a

small amount of energy. Though, this parameter is user-configurable and can be easily changed.

6



p confidence of not exceeding battery capacity
Eb energy for background tasks before next recharge
Ef energy for foreground tasks before next recharge
C total capacity of the battery
Cp present capacity of the battery
H histogram for CDF of recharges
R maximum rate at which battery discharges
Et energy to transition to active state
eb energy for one background task

Table 1: The table shows the list of variables.

If the device is running on battery or not in-use, the algorithm consults the histogram H, which

tracks the probability distribution of when the user recharges the device given a remaining battery

capacity, Cp. Using H, the scheme finds x such that H(x) ≤ (1 − p) ≤ H(x + ∆H), where ∆H is

the size of the histogram bins. With probability at least p, the energy used by foreground processes

will not exceed (100 − x) · Cp. The amount of excess energy that can be used for background

processes is consequently calculated as Eb = Cp − Ef . The system then uses Eb to calculate how

often the device can transition into an active state to perform an operation and evenly distributes

the transitions across the time until the next expected recharge as shown below.

The algorithm conservatively estimates the time before the next recharge (Td) as Td = Cp

R .

Thus, the interval after which a background operation should occur is calculated as Td
Eb

· (eb + Et),

where eb is the energy for one background task, and Et is the cost to transition the device to

the active state to complete the task. However, Et will vary depending on the beginning state of

the device; it costs more to transition a device from suspended to active than from idle to active.

Since, we do not know what state the device will be in when we execute a task we predict it will

be in the same state as the last time a task was executed. If the the last time Llama initiated a

background operation the device was active, then Et = 0. Otherwise we use the energy needed to

resume and then suspend the device, which can be measured online using information provided by

the operating system.

4 Trace-Based Device Simulator

We have developed a trace-based simulator that uses the traces from our four-month user study

to demonstrate Llama’s performance. Unfortunately, the data collected during the user study do

not contain all of the information needed to provide a completely accurate trace. For example, the

trace collection mechanism cannot distinguish between suspended and off states, and it does not
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record transitions between charging and discharging that occur when the device is suspended or

off. However, using measurements taken before and after an off or suspended state, we can infer a

probable course of events that led to the trace. We have found through experimentation that our

results are largely insensitive to the trace reconstruction method.

4.1 Trace Reconstruction

The core of the simulator is a state machine that can be in one of the following states:

• Active – The device is on and there is keyboard or mouse input.

• Idle – The device is on, but there is no keyboard or mouse input.

• Suspended – The device is suspended.

• Off – The device is off.

The above power states are derived from energy management paradigms used on laptops. For

example, a laptop is assumed to be in idle state if there is no user activity for a given period of

time. In each of the above states, the device can also be either charging or discharging—plugged

in or running on battery.

We derive the transitions from one state to the next from the data collected during our user

study. For each device, we analyzed the measurements recorded and generated the following tran-

sitions:

Charging/Discharging: If a measurement records the device is on AC power and the previous

measurement recorded the device as not on AC power, we transition to charging status. Conversely,

if a measurement indicates the device is not on AC and the previous measurement recorded as on

AC we transition the device to discharging.

Active/Idle: If the amount of time since the last keyboard or mouse input is less than 2 seconds

and the device was previously in an idle state, we transition to active and the charging/discharging

status remains unchanged. If the amount of idle time is greater than 2 seconds and the device was

previously in an active state, we transition to idle and the charging/discharging status remains

unchanged.

Suspension/Power-off: If a significant amount of time has elapsed between measurements it is

likely that the device has suspended itself or been turned off. We infer what has occurred based

on the percentage of the battery reported at each measurement. We calculate the average rate at

which the device consumed or gained energy over the interval and use it to determine the state,
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Active charging 27 W Suspended charging 42 W
Active discharging -31 W Suspended discharging -0.4 W
Idle charging 28 W Off discharging 0W
Idle discharging -10 W Total energy to 178 J
Task charging 28 W suspend and wake
Task discharging -15 W Full battery 205488 J

Table 2: The power and energy characteristics of the simulated device.

or combination of states, the device was in over the interval. For example, if the average rate is

larger than the suspended power consumption rate but smaller than the active consumption rate,

we determine that the device was active for part of the interval and off for the remaining part of

the interval.

4.2 Simulated Llama

We use the trace as input to a simulated Llama system. The simulator introduces a new state, task,

in which the device is on and performing a task, but there is no keyboard or mouse input. When

Llama determines that a background task should be performed, it transitions the device into the

task state, and the charging/discharging status remains unchanged. If the device was previously

active or off this transition will have no effect. If active, the device will continue to be active and

perform the task in the background. If off, the device will be unable to perform the task. When the

task is complete, Llama returns the device to the appropriate state, keeping in mind that another

transition may have occurred while the device was performing the task.

5 Evaluation

Our evaluation of Llama answers the following questions: 1. Does Llama efficiently utilize excess

energy? 2. Does use of Llama impact the user-perceived lifetime? 3. Is an adaptive strategy really

necessary?

To answer these questions, we conducted a series of simulated experiments. We used the raw

data collected from the 13 devices discussed in Section 2 to generate our usage models. Recall that

the data collection period lasted from February 16th to June 19th, 2006.

Table 2 outlines the power and energy characteristics of our simulated device. These numbers

were measured using the BatteryMon tool [2] on a Dell Latitude 100L laptop. We measured the

energy consumed in each state for a full discharge/charge cycle and took an average of the mea-

surements. The characteristics of each state were derived from common laptop power management
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Figure 3: This figure illustrates the percentage
of the battery remaining when a device transitions
from discharging to charging for p=95%. Llama is
able to use excess energy thus reducing the battery
remaining at recharge
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Figure 4: This figure illustrates that using a lower
confidence with which Llama will not exceed the bat-
tery capacity Llama is more aggressive and utilizes
more excess energy.

strategies that commonly shut off unnecessary components, such as the network interface, to con-

serve power. The active measurement was taken with the device and screen on, running several

applications and using the network interface, the idle measurement was taken with the screen and

network interface off, and the task measurement was taken with the network interface on, but the

screen off.

For all experiments, we use 15 seconds as the length of a single background task—the approxi-

mate time to download 25 RSS feeds. To condense our results, each experiment reports an average

of all of the measurements taken for the devices in each class. Where appropriate, we also report

the minimum and maximum measurements. Generally, all devices in a particular class perform

similarly.

Figures 3 and 4 show the cumulative distribution of the battery remaining when a device

transitions from discharging to charging. For this experiment, we vary p—the confidence with

which Llama should not exceed the battery capacity. Figure 3 reports the results of p=95% and

Figure 4 reports the results of p=75%. For each class, we also show the result of using no algorithm:

the simulator applies the transitions generated from our battery traces but does not schedule self-

initiated wake-up or perform background tasks.

We observe that Llama reduces the amount of energy remaining when a mobile device begins

to recharge and uses roughly 7% more of the battery for p=95%. In the case of p=75%, Llama

is considerably more aggressive using up to 18% more battery for the mobile users and weekend

warriors. Interestingly, the desktop replacements are less affected by the more aggressive strategy
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Figure 5: This figure illustrates the percentage of
tasks Llama completes for three values of p. Llama
is able to complete a significant portion of tasks,
becoming more conservative as p increases.
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Figure 6: This figure shows the average number of
minutes between tasks. Even the mobile users are
able to complete a task every 35 minutes on average.

because they spend much of their time plugged in, reducing the opportunity for Llama to use excess

energy. Even if Llama continuously executed background tasks during times when the devices were

running on battery, it still would not be able to drain the batteries. Another interesting note is

that Llama does reduce the amount of battery remaining at recharge, potentially impacting the

amount of time the device must spend plugged in. However, the data indicate that 85% of the

time users actually leave their devices plugged in long after they are fully charged. Moreover, with

the advent of faster rechargable batteries [15], we argue that the amount of time used to recharge

should not remain an issue.

In general we expected Llama to be more aggressive, ideally using all energy such that 100% of

recharges occur at 0%. Though, even for very low values of p this does not happen. The reason is

that Llama operates primarily during periods when the device is suspended or idle. A key issue is

that we currently assume that Llama does not use additional energy when run in the background

during times that the user is actively utilizing the device. By taking advantage of the opportunity

to increase the power consumption of an already-active device, for example by increasing the screen

brightness or processing speed, we anticipate even better performance for Llama.

Figure 5 shows the percentage of tasks completed by Llama in comparison to the ideal number

of tasks the device could have completed if it were able to perform a task every 5 minutes without

using additional energy. In other words, the ideal assumes that the energy cost of a task is nothing.

We report results for three values for p. The error bars indicate the maximum and minimum values

across the devices in each class.
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Figure 8: This figure shows the percentage of tasks
completed by Llama and two schemes that use fixed
inter-task intervals. Though the 5 minute scheme
completes a large percentage of tasks, this figure
does not show the associated cost—a significant
amount of unusable time for mobile users.

These results illustrate that Llama provides a significant benefit, completing a substantial por-

tion of tasks. Even in the most conservative case, desktop replacements complete well over 90%

of the tasks and mobile users well over 50%. As expected, the mobile users and weekend warriors

become considerably more conservative as p increases, though the desktop replacements are less

affected by p because they spend much of their time plugged in. Another interesting observation

is that the weekend warrior class shows considerably more variation than the others. Though the

clustering algorithm grouped them into the same class, the data for each of the four weekend war-

riors differs considerably; one device looks much like a mobile user while another is rarely even

used.

To gain a better understanding of the impact Llama has for the end-user, Figure 6 shows the

average number of minutes between the completion of tasks. The first six devices belong to the

desktop replacement class, the next four are weekend warriors, and the last three are mobile users.

The portion of each bar labeled Devices Switched ON excludes from the average the time between

two tasks if the device was in an off state at any point between the tasks. Because the desktop

replacements have more energy to spare, they are able to perform a tasks, on average, every 12

minutes. Though the mobile users have less energy to spare, they are still able to perform a task

every 35 minutes on average. Device 7 is clearly an outlier; it performs tasks every 160 minutes

because it spends a significant amount of time off.

The previous figures clearly show the benefit of using Llama. The associated cost is the potential
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Figure 9: This figure illustrates the unusable time
metric for the 5 minute scheme. This scheme is ap-
propriate for desktop replacements, but debilitating
for mobile users.
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Figure 10: This figures illustrates the unusable time
metric for the 30 minute scheme. This is is appropri-
ate for the mobile users, but is much too conservative
for the desktop replacements.

for Llama to impact the user-perceived lifetime of the device by using too much energy. Figure 7

plots the cumulative distribution of the unusable time of each class for p=95%. The unusable time

is defined as the amount of time a device spends with its battery below 3% when running Llama

minus the amount of time it spends with its battery below 3% without Llama. In other words, this

measurement tells us the amount of time the user wished to use the device, but was unable.

Intuitively, for p=95% we expected to see 95% of occurrences introducing 0 minutes of unusable

time. This is true for the desktop replacements, but for the mobile users over 15% of the recharges

introduce some unusable time. Fortunately, all but 5% of these occurrences introduce unusable

time of 10 minutes or less—a very small cost. Additionally, closer analysis of the data indicates

that Llama is more aggressive in scheduling tasks when users are active and users often suspend

their devices while a task is in-progress. In these cases, Llama uses a small amount of energy to

complete the task before actually suspending the device. An alternate strategy, which would reduce

unusable time, would be to preempt in-progress tasks when the device suspends.

We have also looked at the unusable time and the percentage of tasks completed for varied

task length and lower values of p. In summary, longer tasks use more energy, in particular when

devices often suspend while completing a task. However, the percentage of tasks completed remains

roughly the same for longer tasks. For lower values of p, the unusable time increases, sometimes

reaching 40 minutes but the percentage of recharges that occur at 0% is much closer to p. For

example, with p=75%, mobile users recharge above 0%, 73% of the time.

Our final experiments consider whether an adaptive strategy is necessary. Figures 8, 9, and
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10 compare Llama against a periodic scheme that always uses a fixed inter-task interval of either

5 minutes or 30 minutes. Note that the 5 minute scheme does not complete 100% of the tasks

because the ideal scheme assumes that a task incurs no additional energy cost.

We find that while the 5 minute scheme performs significantly more tasks, over 30% more in the

case of the mobile users, it also introduces a significant amount of unusable time. The mobile users

run out of battery almost 30% of the time and in some instances are unusable for more than 60

minutes. The more conservative 30 minute scheme is much better for the mobile users, but is too

conservative for the desktop replacements, reducing the percentage of tasks completed by almost

25%. Our adaptive scheme provides a necessary device-specific balance between the frequency of

background tasks and user-perceived lifetime.

6 Related Work

A significant amount of research has focused on power management techniques for mobile devices.

Several projects, including Odyssey [4], ECOSystem [18], and work by Simunic, et al. [12], attempt

to balance performance and system-wide energy usage. Other projects have more specifically ad-

dressed individual resources such as processing [9], memory [7], and the network interface [6, 14].

This work is certainly complementary to ours. During periods of activity, we can leverage any com-

bination of other strategies for reducing the amount of energy consumed. The smaller the amount

of energy consumed, the more often we can execute transparent applications.

Wake-on-Wireless (WoW) [11] and Turducken [13] take a slightly different approach to power

management. The goal of both projects is to enable low-power operating modes in mobile devices by

combining several computing platforms that operate at varying power points. Low-power platforms

can perform basic tasks, such as wireless network discovery, on behalf of high-power platforms.

Though we could envision integrating our algorithms into such a platform, our contribution is an

adaptive strategy for determining how to spend excess energy on a mobile device.

Also related to our work is the collection of work on caching and prefetching. Traditionally,

caching and prefetching have applied specifically to the hard disk [8]. Central to this work are

algorithms for determining when and what to prefetch. There have also been a number of projects

that have focused on caching and prefetching for a mobile environment [16, 1, 5, 10]. This work

leverages techniques such as extending the idle time of the mobile device and reducing the amount

of data prefetched. However, this work does not attempt to make adaptive decisions based on

14



energy availability.

Yin and Cao [17] propose an adaptive scheme. However, their scheme focuses solely on de-

termining the number of items to be prefetched whereas we propose a general algorithm that can

be used for prefetching or other tasks. Further, they require either static knowledge of the target

lifetime of the device or a static set of thresholds for determining when the device should modify

its prefetching strategy. In contrast, we track energy usage on the device and adapt our algorithm

based on prior usage patterns.

7 Conclusion

Llama is a system designed to adaptively and transparently utilize excess energy to perform back-

ground tasks on mobile devices. We validate the hypotheses that mobile users have excess energy to

spare and exhibit predictable behavior through an extensive four-month user study of 13 laptops.

We present the design of an adaptive, online algorithm that learns user behavior and predicts how

much energy a device can devote to background tasks without affecting user-perceived lifetime.

Using the data collected from the user study we show that Llama can help the device spend a large

amount of excess energy while remaining highly confident that the user-perceived lifetime will not

be affected.
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