06-0: **Ordered List ADT**

Operations:

- Insert an element in the list
- Check if an element is in the list
- Remove an element from the list
- Print out the contents of the list, in order

06-1: **Implementing Ordered List**

Using an Ordered Array – Running times:

- Check \(\Theta(lg n) \)
- Insert \(\Theta(n) \)
- Remove \(\Theta(n) \)
- Print \(\Theta(n) \)

06-2: **Implementing Ordered List**

Using an Ordered Array – Running times:

- Check \(\Theta(lg n) \)
- Insert \(\Theta(n) \)
- Remove \(\Theta(n) \)
- Print \(\Theta(n) \)

06-3: **Implementing Ordered List**

Using an Unordered Array – Running times:

- Check \(\Theta(n) \)
- Insert \(\Theta(1) \)
- Remove \(\Theta(n) \) Need to find element first!
- Print \(\Theta(n lg n) \)

(Given a fast sorting algorithm)

06-4: **Implementing Ordered List**

Using an Unordered Array – Running times:

- Check \(\Theta(n) \)
- Insert \(\Theta(1) \)
- Remove \(\Theta(n) \) Need to find element first!
- Print \(\Theta(n lg n) \)

06-5: **Implementing Ordered List**

Using an Ordered Linked List – Running times:
Check $\Theta(n)$
Insert $\Theta(n)$
Remove $\Theta(n)$
Print $\Theta(n)$

06-7: **The Best of Both Worlds**

- Linked Lists – Insert fast / Find slow
- Arrays – Find fast / Insert slow
- The only way to examine nth element in a linked list is to traverse (n-1) other elements

```
4 --| 8 --| 12 --| 15 --| 22 --| 25 --| 28
```

- If we could leap to the middle of the list ...

06-8: **The Best of Both Worlds**

```
4 --| 8 --| 12 --| 15 --| 22 --| 25 --| 28
```

06-9: **The Best of Both Worlds**

```
4 --| 8 --| 12 --| 15 --| 22 --| 25 --| 28
```

Move the initial pointer to the middle of the list:

```
4 --| 8 --| 12 --| 15 --| 22 --| 25 --| 28
```

We’ve cut our search time in half! Have we changed the $\Theta()$ running time?

06-10: **The Best of Both Worlds**

```
4 --| 8 --| 12 --| 15 --| 22 --| 25 --| 28
```

Move the initial pointer to the middle of the list:

```
4 --| 8 --| 12 --| 15 --| 22 --| 25 --| 28
```

We’ve cut our search time in half! Have we changed the $\Theta()$ running time?

Repeat the process!

06-11: **The Best of Both Worlds**
06-12: **The Best of Both Worlds**
Grab the first element of the list:

```
  4  8  12  15  22  25  28
```

Give it a good shake -

```
    15
   /  
  8   25
 /     /
4  12   22
      /   
     28   
```

06-13: **Binary Trees**
Binary Trees are Recursive Data Structures
- Base Case: Empty Tree
- Recursive Case: Node, consisting of:
 - Left Child (Tree)
 - Right Child (Tree)
 - Data

06-14: **Binary Tree Examples**
The following are all Binary Trees (Though not Binary Search Trees)

```
        A
      / \  
    B   C
  /     /
D     E
  
```

```
        A
      /   
    B   C
  /     
D     D
  
```

06-15: **Tree Terminology**
- Parent / Child
- Leaf node
- Root node
- Edge (between nodes)
- Path
- Ancestor / Descendant
- Depth of a node n
 - Length of path from root to n
- Height of a tree
 - (Depth of deepest node) + 1

06-16: **Full Binary Tree**
- Each node has 0 or 2 children
- Full Binary Trees

06-17: **Complete Binary Tree**
- Can be built by starting at the root, and filling the tree by levels from left to right
- Complete Binary Trees
- *Not* Complete Binary Trees
06-18: **Binary Search Trees**

- **Binary Trees**
- For each node \(n \), \((\text{value stored at node } n) \geq (\text{value stored in left subtree}) \)
- For each node \(n \), \((\text{value stored at node } n) < (\text{value stored in right subtree}) \)

06-19: **Example Binary Search Trees**

```
A
  B
  C
  D

D
  C
  B
  A
```

06-20: **Implementing BSTs**

- Each Node in a BST is implemented as a class:

```java
public class Node {
    public Comparable data;
    public Node left;
    public Node right;
}
```

06-21: **Implementing BSTs**

```java
public class Node {
    public Node(Comparable data, Node left, Node right) {
        this.data = data;
        this.left = left;
        this.right = right;
    }
    public Node left() {
        return left;
    }
    public Node setLeft(Node newLeft) {
        left = newLeft
    }
    ... (etc)
    private Comparable data;
    private Node left;
    private Node right;
}
```

06-22: **Finding an Element in a BST**

- Binary Search Trees are recursive data structures, so most operations on them will be recursive as well
• Recall how to write a recursive algorithm ...

06-23: Writing a Recursive Algorithm

• Determine a small version of the problem, which can be solved immediately. This is the base case
• Determine how to make the problem smaller
• Once the problem has been made smaller, we can assume that the function that we are writing will work correctly on the smaller problem (Recursive Leap of Faith)
 • Determine how to use the solution to the smaller problem to solve the larger problem

06-24: Finding an Element in a BST

• First, the Base Case – when is it easy to determine if an element is stored in a Binary Search Tree?

06-25: Finding an Element in a BST

• First, the Base Case – when is it easy to determine if an element is stored in a Binary Search Tree?
 • If the tree is empty, then the element can’t be there
 • If the element is stored at the root, then the element is there

06-26: Finding an Element in a BST

• Next, the Recursive Case – how do we make the problem smaller?

06-27: Finding an Element in a BST

• Next, the Recursive Case – how do we make the problem smaller?
 • Both the left and right subtrees are smaller versions of the problem. Which one do we use?

06-28: Finding an Element in a BST

• Next, the Recursive Case – how do we make the problem smaller?
 • Both the left and right subtrees are smaller versions of the problem. Which one do we use?
 • If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use the right subtree.

06-29: Finding an Element in a BST

• Next, the Recursive Case – how do we make the problem smaller?
 • Both the left and right subtrees are smaller versions of the problem. Which one do we use?
 • If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use the right subtree.
 • How do we use the solution to the subproblem to solve the original problem?

06-30: Finding an Element in a BST

• Next, the Recursive Case – how do we make the problem smaller?
• Both the left and right subtrees are smaller versions of the problem. Which one do we use?
• If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use the right subtree.

• How do we use the solution to the subproblem to solve the original problem?
 • The solution to the subproblem is the solution to the original problem (this is not always the case in recursive algorithms)

06-31: Finding an Element in a BST
To find an element \(e \) in a Binary Search Tree \(T \):

• If \(T \) is empty, then \(e \) is not in \(T \)
• If the root of \(T \) contains \(e \), then \(e \) is in \(T \)
• If \(e < \) the element stored in the root of \(T \):
 • Look for \(e \) in the left subtree of \(T \)
Otherwise
 • Look for \(e \) in the right subtree of \(T \)

06-32: Finding an Element in a BST

boolean find(Node tree, Comparable elem) {
 if (tree == null)
 return false;
 if (elem.compareTo(tree.element()) == 0)
 return true;
 if (elem.compareTo(tree) < 0)
 return find(tree.left(), elem);
 else
 return find(tree.right(), elem);
}

06-33: Printing out a BST
To print out all element in a BST:

• Print all elements in the left subtree, in order
• Print out the element at the root of the tree
• Print all elements in the right subtree, in order

06-34: Printing out a BST
To print out all element in a BST:

• Print all elements in the left subtree, in order
• Print out the element at the root of the tree
• Print all elements in the right subtree, in order
• Each subproblem is a smaller version of the original problem – we can assume that a recursive call will work!

06-35: **Printing out a BST**

• What is the base case for printing out a Binary Search Tree – what is an easy tree to print out?

06-36: **Printing out a BST**

• What is the base case for printing out a Binary Search Tree – what is an easy tree to print out?

• An empty tree is extremely easy to print out – do nothing!

• Code for printing a BST ...

```java
void print(Node tree) {
    if (tree != null) {
        print(tree.left());
        System.out.println(tree.element());
        print(tree.right());
    }
}
```

06-38: **Printing out a BST**

Examples

06-39: **Tree Traversals**

• PREORDER Traversal
 • Do operation on root of the tree
 • Traverse left subtree
 • Traverse right subtree

• INORDER Traversal
 • Traverse left subtree
 • Do operation on root of the tree
 • Traverse right subtree

• POSTORDER Traversal
 • Traverse left subtree
 • Traverse right subtree
 • Do operation on root of the tree

06-40: **PREORDER Examples**

06-41: **POSTORDER Examples**

06-42: **INORDER Examples**

06-43: **BST Minimal Element**

To find the minimal element in a BST:
• Base Case: When is it easy to find the smallest element in a BST?

• Recursive Case: How can we make the problem smaller?
 How can we use the solution to the smaller problem to solve the original problem?

06-44: **BST Minimal Element**
To find the minimal element in a BST:
Base Case:
• When is it easy to find the smallest element in a BST?

06-45: **BST Minimal Element**
To find the minimal element in a BST:
Base Case:
• When is it easy to find the smallest element in a BST?
 • When the left subtree is empty, then the element stored at the root is the smallest element in the tree.

06-46: **BST Minimal Element**
To find the minimal element in a BST:
Recursive Case:
• How can we make the problem smaller?

06-47: **BST Minimal Element**
To find the minimal element in a BST:
Recursive Case:
• How can we make the problem smaller?
 • Both the left and right subtrees are smaller versions of the same problem
 • How can we use the solution to a smaller problem to solve the original problem?

06-48: **BST Minimal Element**
To find the minimal element in a BST:
Recursive Case:
• How can we make the problem smaller?
 • Both the left and right subtrees are smaller versions of the same problem
 • How can we use the solution to a smaller problem to solve the original problem?
 • The smallest element in the left subtree is the smallest element in the tree

06-49: **BST Minimal Element**

```java
Comparable minimum(Node tree) {
    if (tree == null)
        return null;
    if (tree.left() == null)
        return tree.element();
    else
        return minimum(tree.left());
}
```
06-50: **BST Minimal Element**

Iterative Version

```java
Comparable minimum(Node tree) {
    if (tree == null)
        return null;
    while (tree.left() != null)
        tree = tree.left();
    return tree.element();
}
```

06-51: **Inserting e into BST T**

- What is the base case – an easy tree to insert an element into?

06-52: **Inserting e into BST T**

- What is the base case – an easy tree to insert an element into?

 - An empty tree
 - Create a new tree, containing the element e

06-53: **Inserting e into BST T**

- Recursive Case: How do we make the problem smaller?

06-54: **Inserting e into BST T**

- Recursive Case: How do we make the problem smaller?

 - The left and right subtrees are smaller versions of the same problem.
 - How do we use these smaller versions of the problem?

06-55: **Inserting e into BST T**

- Recursive Case: How do we make the problem smaller?

 - The left and right subtrees are smaller versions of the same problem

 - Insert the element into the left subtree if $e \leq$ value stored at the root, and insert the element into the right subtree if $e >$ value stored at the root

06-56: **Inserting e into BST T**

- Base case – T is empty:

 - Create a new tree, containing the element e

- Recursive Case:

 - If e is less than the element at the root of T, insert e into left subtree

 - If e is greater than the element at the root of T, insert e into the right subtree

06-57: **Tree Manipulation in Java**
• Tree manipulation functions return trees
• Insert method takes as input the old tree and the element to insert, and returns the new tree, with the element inserted
 • Old value (pre-insertion) of tree will be destroyed
• To insert an element \(e \) into a tree \(T \):
 • \(T = \text{insert}(T, e); \)

06-58: Inserting \(e \) into BST \(T \)

```java
Node insert(Node tree, Comparable elem) {
    if (tree == null) {
        return new Node(elem);
    } else if (elem.compareTo(tree.element()) <= 0) {
        tree.setLeft(insert(tree.left(), elem));
        return tree;
    } else {
        tree.setRight(insert(tree.right(), elem));
        return tree;
    }
}
```

06-59: Deleting From a BST

• Removing a leaf:

06-60: Deleting From a BST

• Removing a leaf:
 • Remove element immediately

06-61: Deleting From a BST

• Removing a leaf:
 • Remove element immediately
• Removing a node with one child:

06-62: Deleting From a BST

• Removing a leaf:
 • Remove element immediately
• Removing a node with one child:
 • Just like removing from a linked list
 • Make parent point to child

06-63: Deleting From a BST
- Removing a leaf:
 - Remove element immediately

- Removing a node with one child:
 - Just like removing from a linked list
 - Make parent point to child

- Removing a node with two children:

06-64: **Deleting From a BST**

- Removing a leaf:
 - Remove element immediately

- Removing a node with one child:
 - Just like removing from a linked list
 - Make parent point to child

- Removing a node with two children:
 - Replace node with largest element in left subtree, or the smallest element in the right subtree

06-65: **Comparable vs. .key() method**

- We have been storing “Comparable” elements in BSTs
- Alternately, could use a “key()” method – elements stored in BSTs must implement a key() method, which returns an integer.
- We can combine the two methods
 - Each element stored in the tree has a key() method
 - key() method returns Comparable class

06-66: **BST Implementation Details**

- Use BSTs to implement Ordered List ADT
- Operations
 - Insert
 - Find
 - Remove
 - Print in Order
- The specification (interface) should not specify an implementation
 - Allow several different implementations of the same interface

06-67: **BST Implementation Details**

- BST functions require the root of the tree be sent in as a parameter
Ordered list functions should *not* contain implementation details!

What should we do?

BST Implementation Details

- BST functions require the root of the tree be sent in as a parameter
- Ordered list functions should *not* contain implementation details!
- What should we do?
 - Private variable, holds root of the tree
 - Private recursive methods, require root as an argument
 - Public methods call private methods, passing in private root