02-0: **Hiring Problem**

- Need an office assistant
 - Employment Agency sends one candidate every day
 - Interview that person, either hire that person (and fire the old one), or keep old person
 - Always want the best person – always hire if interviewee is better than current person

02-1: **Hiring Problem**

```
HIRE-ASSISTANT(n)
best <- 0
for i <- 1 to n do
  if candidate[i] is better than candidate[best]
    best <- i
    hire candidate i
```

- Cost to interview candidate is C_i
- Cost to hire a candidate is C_h
- Assume C_i is much less than C_h
- Total cost: $O(C_i \ast n + C_h \ast m)$, where $m = \#$ of hirings

02-2: **Hiring Problem**

- Best case cost?
- Worst case cost?
- Average cost?

02-3: **Hiring Problem**

- Best case cost? $C_i \ast n + C_h$
- Worst case cost? $C_i \ast n + C_h \ast n$
- Average cost?
 - Assume applicants come in random order
 - Each permutation of applicants is equally likely

02-4: **Probability Review**

- Indicator variable associated with event A:

 $I\{A\} = \begin{cases}
 1 & \text{if } A \text{ occurs} \\
 0 & \text{if } A \text{ does not occur}
 \end{cases}$

- Example: Flip a coin: Y is a random variable representing the coin flip

 $X_H = I\{Y = H\} = \begin{cases}
 1 & \text{if } Y = H \\
 0 & \text{otherwise}
 \end{cases}$
02-5: Probability Review

- Expected value $E[]$ of a random variable
 - Value you “expect” a random variable to have
 - Average (mean) value of the variable over many trials
 - Does not have to equal the value of any particular trial
 - Bus example(s)

02-6: Probability Review

- Expected value $E[]$ of a random variable

 \[
 E[X] = \sum_{\text{all values } x \text{ of } X} x \cdot P_r\{X = x\}
 \]

- When we want the “average case” running time of an algorithm, we want the Expected Value of the running time

02-7: Probability Review

$X_H = I\{Y = H\}$

\[
E[X_H] = E[I\{Y = H\}]
= 1 \cdot P_r\{Y = H\} + 0 \cdot P_r\{Y = T\}
= 1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2}
= \frac{1}{2}
\]

02-8: Probability Review

- Expected # of heads in n coin flips
 - $X =$ # of heads in n flips
 - $X_i =$ indicator variable: coin flip i is heads

02-9: Probability Review

- Expected # of heads in n coin flips
 - $X =$ # of heads in n flips
 - $X_i =$ indicator variable: coin flip i is heads

\[
E[X] = E\left[\sum_{i=1}^{n} X_i\right]
= \sum_{i=1}^{n} E[X_i]
= \sum_{i=1}^{n} \frac{1}{2} = \frac{n}{2}
\]

02-10: Probability Review
• For any event A, indicator variable $X_A = I\{A\} \ E[X_A] = Pr\{A\}$

\[
E[X_A] = 1 \cdot Pr\{A\} + 0 \cdot Pr\{\neg A\} = Pr\{A\}
\]

02-11: Hiring Problem

• Calculate the expected number of hirings
 • $X = \#$ of candidates hired
 • $X_i = I\{\text{Candidate } i \text{ is hired}\}$
 • $X = X_1 + X_2 + \ldots + X_n$

\[
E[X] = E \left[\sum_{i=1}^{n} X_i \right]
\]

02-12: Hiring Problem

• Calculate the expected number of hirings
 • $X = \#$ of candidates hired
 • $X_i = I\{\text{Candidate } i \text{ is hired}\}$
 • $X = X_1 + X_2 + \ldots + X_n$

\[
E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i]
\]

• What is $E[X_i]$?

02-13: Hiring Problem

• What is $E[X_i]$?
 • $E[X_i] = \text{Probability that the } i\text{th candidate is hired}$
 • When is the $i\text{th candidate hired}$?

02-14: Hiring Problem

• What is $E[X_i]$?
 • $E[X_i] = \text{Probability that the } i\text{th candidate is hired}$
 • $i\text{th candidate hired when s/he is better than the } i-1 \text{ candidates that came before}$
 • Assuming that all permutations of candidates are equally likely, what is the probability that the $i\text{th candidate is the best of the first } i \text{ candidates}$?

02-15: Hiring Problem
• What is $E[X_i]$?

 - $E[X_i]$ = Probability that the ith candidate is hired
 - ith candidate hired when s/he is better than the $i - 1$ candidates that came before
 - Assuming that all permutations of candidates are equally likely, what is the probability that the ith candidate is the best of the first i candidates?
 - $\frac{1}{i}$

02-16: **Hiring Problem**

Probability that the ith candidate is best of first i is $\frac{1}{i}$

• Sanity Check: (Doing a few concrete examples as a sanity check is often a good idea)

 - $i = 1$, probability that the first candidate is the best so far = $1/1 = 1$
 - $i = 2$: (1,2), (2,1) In one of the two permutations, 2nd candidate is the best so far
 - $i = 3$: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) In two of the 6 permutations, the 3rd candidate is the best so far

 • Note that a few concrete examples do not prove anything, but a counter-example can show that you have made a mistake

02-17: **Hiring Problem**

• Now that we know that $E[X_i] = \frac{1}{i}$, we can find the expected number of hires:

\[
E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{1}{i} = \ln n + O(1) \in O(\log n)
\]

If the candidates are seen randomly

02-18: **Randomized Algorithms**

• In average-case analysis, we often assume that all inputs are equally likely

• In actuality, some inputs might be much more likely

 • If we’re really unlucky, the most likely inputs can be the most costly (as in some implementations of quicksort)

• What can we do?

02-19: **Randomized Algorithms**

• In average-case analysis, we often assume that all inputs are equally likely
• In actuality, some inputs might be much more likely
 • If we’re really unlucky, the most likely inputs can be the most costly (as in some implementations of quicksort)
• What can we do?
 • Force all inputs to be equally likely, by randomizing the input

02-20: Randomized Algorithms

• In the hire-assistant problem, we can first randomly permute the lists of candidates, and then run the algorithm
• Then, for any input, we’d be guaranteed that the expected number of hires would be $\ln n + O(1)$
• How can we randomly permute a list, so that every permutation is equally as likely?
 • That is, how can we shuffle a list, so that every permutation is equally likely? Assume that we have a good random number generator.

02-21: Randomized Algorithms

• To create a random permutation (method 1):
 • Assign each element in the list a random priority
 • Sort based on the priority

```plaintext
n <- length(A)
for i <- 1 to n do
  Priority[i] = Random(1, n*n*n)
sort A (using Priority as keys)
```
• Why n^3?
• Time?

02-22: Randomized Algorithms

• To create a random permutation (method 2):

```plaintext
n <- length(A)
for i <- 1 to n do
  swap(A[i], A[Random(i, n)]
```

02-23: On-line Hiring Problem

• Interview candidates one at a time
• After each person is interviewed:
 • Tell them at once they are not wanted
 • Hire them (and stop the interview process)
• How can we maximize the probability that we get the best person (assume that they come in random order – we can always randomize the input to insure this)
02-24: **On-line Hiring Problem**

Algorithm:

- Interview first k candidates, reject them all
- Continue to interview candidates, hiring the first one that is better than anyone seen so far

Problems? Can we do better?

02-25: **On-line Hiring Problem**

- Interview first k candidates, reject them all
- Continue to interview candidates, hiring the first one that is better than anyone seen so far

Analysis:

- The bigger k is, the larger the chance that we see the best person in the first k (and don’t hire the best person).
- The smaller k is, the larger the chance that we stop too soon.
- How should we pick k?

02-26: **On-line Hiring Problem**

- S_i = the best applicant is i, and we pick i.

\[
Pr\{S\} = \sum_{i=k+1}^{n} Pr\{S_i\}
\]

- Why $k + 1$ instead of 1?
- When is the best person picked?

02-27: **On-line Hiring Problem**

\[
Pr\{s\} = \sum_{i=k+1}^{n} Pr\{S_i\}
\]

- Why $k + 1$ instead of 1?
 - $Pr\{S_i\} = 0$ if $i < k$, since we never pick the first k people
- When is the best person picked?
 - If the best person is interviewed, s/he will be picked. The best person is interviewed when candidates $k + 1 .. best - 1$ are all worse than the best in $1 .. k$

02-28: **On-line Hiring Problem**

- B_i == ith candidate is the best
- O_i == none of applicants in $k + 1 .. i - 1$ are picked
S_i (in terms of B_i and O_i) = ?

02-29: **On-line Hiring Problem**

- B_i = ith candidate is the best
- O_i = none of applicants in $k+1..i-1$ are picked

$S_i = B_i \land O_i$

$$Pr\{S_i\} = Pr\{B_i \land O_i\}$$
$$= Pr\{B_i\} \cdot Pr\{O_i|B_i\}$$
$$= Pr\{B_i\} \cdot Pr\{O_i\}$$
$$= (1/n) \cdot k/(i-1)$$

02-30: **On-line Hiring Problem**

$$Pr\{S_i\} = (1/n) \cdot k/(i-1)$$

$$Pr\{S\} = \sum_{i=k+1}^{n} \frac{k}{n(i-1)}$$
$$= \frac{k}{n} \sum_{i=k+1}^{n} \frac{1}{i-1}$$
$$= \frac{k}{n} \sum_{i=k}^{n-1} \frac{1}{i}$$

How do we find a value of a variable to maximize a function?

02-31: **On-line Hiring Problem**

Hard to take a derivative of a summation. However:

$$\int_{m}^{n+1} f(x)dx \leq \sum_{i=m}^{n} f(i) \leq \int_{m}^{n} f(x)dx$$

(if $f(x)$ is monotonically decreasing)

Looking at just the lower bound:

$$\frac{k}{n} \int_{k}^{n} \frac{1}{x} dx \leq \frac{k}{n} \sum_{i=k}^{n-1} \frac{1}{i}$$

$$\frac{k}{n} (\ln n - \ln k) \leq Pr\{S\}$$

02-32: **On-line Hiring Problem**

Maximizing the lower bound:

- To maximize $k/n(\ln n - \ln k)$: Take first derivative with respect to k, set to 0.
- (recall the product rule for derivatives: $D[f(k)g(k)] = D[f(k)]g(k) + f(k)D[g(k)]$)
02-33: **On-line Hiring Problem**

- To maximize $k/n (\ln n - \ln k)$: Take first derivative with respect to k, set to 0.
- (recall the product rule for derivatives: $D[f(k)g(k)] = D[f(k)]g(k) + f(k)D[g(k)]$)

\[
\frac{1}{n}(\ln n - \ln k - 1) = 0
\]

\[
\ln k = \ln n - 1
\]

\[
\ln k = \ln n - \ln e
\]

\[
\ln k = \ln n/e
\]

\[
k = \frac{n}{e}
\]

02-34: **On-line Hiring Problem**

- Interview just under 1/3 of the applicants (hiring none of them)
- Hire the first person better than anyone seen so far
- Probability of getting the best person $\geq (n/e)/n(\ln n - \ln(n/e)) = 1/e(\ln e) = 1/e \approx 0.37$